
汇编语言程序设计
Assembly Language

I. 绪　论

贺利坚　主讲

0101 我们要学汇编语言

0102 由机器语言到汇编语言

0103 计算机的组成

0104 内存的读写与地址空间

0105 汇编语言实践环境搭建

汇编语言程序设计课程内容
1. 绪论
2. 访问寄存器和内存
3. 汇编语言程序
4. 内存寻址方式
5. 流程转移与子程序
6. 中断及其应用
7. 高级汇编语言技术

视频（共7个） 教材对应章节

0101 为什么要学汇编语言

0102 由机器语言到汇编语言 1.1-1.3节

0103 计算机的组成 1.4-1.10节

0104 内存的读写与地址空间 1.11-1.15节

0105 汇编语言实践环境搭建

汇编语言程序设计
Assembly Language

为什么要学汇编语言

贺利坚　主讲

程序设计语言家谱——汇编是老祖宗！

汇编老矣，尚能饭否?

年事已高的汇编，仍被广泛使用，甚至不可替代(TIOBE排行榜)

http://www.tiobe.com/tiobe-index//

汇编语言的TIOBE指数--汇编近来风头更劲

http://www.tiobe.com/tiobe-index/assembly-language/

学习汇编语言的理由

: 汇编语言仍在发挥不可替代的作用

; 效率

. 运行效率：开发软件的核心部件，快速执行和实时响应。

. 开发效率：做合适的事，开发效率无敌

; 底层：计算机及外围设备的驱动程序

. 操作系统的内核

. 嵌入式系统：家用电器、仪器仪表、物联网……

: 汇编语言在学习计算机中起到的独特作用——直击计算机系统的核心

; 便于加深对计算机原理和操作系统等课程的理解。

; 通过学习和使用汇编语言，能够感知、体会和理解机器的逻辑功能

. 向上为理解各种软件系统的原理，打下技术理论基础

. 向下为掌握硬件系统的原理，打下实践应用基础。

; 学会底层的程序调试和错误分析方法。

这门课要学什么？

: 课名：汇编语言程序设计

: 定位：理解硬件结构，掌握指令集，理解程序的运行过程

: 内容： 8088、8086指令集与汇编语言程序设计

: 教材：

: 本课只解决入门

; 降低入门难度

; 关注核心思维与方法

:进一步延伸

; Inter 80x86汇编

; Linux汇编

; ARM 汇编

走着瞧！

学习方法

: 贯穿实践的方法

: 学会观察机器的内部状态

: 学习进程

视频

教材

检测
实验

学法

• 书：循序渐进
• 本：精熟学习

汇编语言程序设计
Assembly Language

由机器语言到汇编语言

贺利坚　主讲

机器语言与机器指令

: 机器语言是机器指令的集合。

: 机器指令是一台机器可以正确执行的命令。

: 机器指令由一串二进制数表示，例 01010000

: 电平脉冲：

: 早期程序员们的工作形态

; 将 0、1 数字编程的程序代码打在纸带或卡

片上，1打孔，0不打孔，再将程序通过纸

带机或卡片机输入计算机，进行运算。

:例：计算S = 768 + 12288 - 1280的程序
:机器码：
 101100000000000000000011
 000001010000000000110000
 001011010000000000000101

这个程序错哪了？

101100000000000000000011

000001010000000000110000

000101101000000000000101

汇编语言与汇编指令

: 汇编语言的主体是汇编指令。

: 汇编指令和机器指令的差别在于指令的表示方法上

; 汇编指令是机器指令便于记忆的书写格式。

; 汇编指令是机器指令的助记符。

机器指令： 1000100111011000

操作：将寄存器BX的内容送到AX中

汇编指令：MOV AX, BX

寄存器：CPU中可以存储数据的器件。

一个CPU中有多个寄存器。

用汇编语言编写程序的工作过程

程序员 编译器
计算机

1000100111011000
……
……

机器码
mov ax, bx
……
……

汇编指令

;汇编语言程序示例
assume cs:codesg
codesg segment
start:
 mov ax,0123H
 mov bx,0456H
 add ax,bx
 add ax,ax

 mov ax,4c00h
 int 21h
codesg ends
end

汇编指令
——机器码的助记符

伪指令
——由编译器执行

其它符号
——由编译器识别

汇编语言程序设计
Assembly Language

计算机的组成

贺利坚　主讲

“解剖”计算机

主板上有：

: CPU

: 总线

: 内存(条)

: 扩展槽(接外部设备)

计算机的组成

CPU 是计算机的核心部件，它控制整个计
算机的运作并进行运算。要想让一个CPU
工作，就必须向它提供指令和数据。

指令和数据在存储器（内存）中存放。

离开了内存，性能再好的CPU也无法工作。

指令和数据的表示

:计算机中的数据和指令，存储在内存或磁盘上。

:数据和指令，都是二进制信息。

:问题：二进制信息1000100111011000是数据，还是指令？

; 1000100111011000 ─> 89D8H （数据）

; 1000100111011000 ─> MOV AX,BX （程序）

:数据如何表示？

; 1000100111011000B （二进制）

; 89D8H （十六进制）

; 104730O（八进制）

; 35288D（十进制）

:数据量：B、KB、MB、GB、TB...

计算机中的存储单元

:存储器被划分为若干个存储单元，每个存储单元从0开始顺序编号；

:例如：

 一个存储器有128个存储单元，

编号从0~127,

如右图示：

:实际

内存空间很“大”，

8086有20条数据线，

寻址空间220，为1MB

0

1

2

3

...

...

124

125

126

127

0

1

2

3

...

...

FFFFEH

FFFFFH

计算机中的总线

:在计算机中专门有连接CPU和其他芯片的导线，通常称为总线。

; 物理上：一根根导线的集合；

; 逻辑上划分为

. 地址总线

. 数据总线

. 控制总线

三类总线

• CPU是通过地址总线来指
定存储单元的。

• 地址总线宽度，决定了
可寻址的存储单元大小。

• N根地址总线（宽度为
N），对应寻址空间2N。

• CPU与内存或其它器件之间的数据传送是通过
数据总线来进行的。

• 数据总线的宽度决定了CPU和外界的数据传送
速度。

• 例：向内存中写入数据89D8H时的数据传送

8088CPU(8位数据总线)
上传送的信息

 8086CPU(16位数据总线)
上传送的信息

• CPU通过控制总线对外部
器件进行控制。

• 控制总线是一些不同控制
线的集合

• 控制总线宽度决定了CPU
对外部器件的控制能力。

x86CPU性能一览

CPU 地址总线宽度 寻址能力 数据总线宽度 一次传送数据 读取1KB数据要读___次

8080

8088

8086

80286

80386

20

16 640KB 8

1B

20

24

32

1MB

1MB

16MB

4GB

8

16

16

32

1B

2B

2B

4B

1024

1024

512

512

256

汇编语言程序设计
Assembly Language

内存的读写与地址空间

贺利坚　主讲

CPU对存储器的读写

:CPU要想进行数据的读写，必须和外部器件进行三类信息的交互：

; 存储单元的地址
（地址信息）

; 器件的选择，读或写命令
（控制信息）

; 读或写的数据
（数据信息）

:演示

机器码： 101000000000001100000000

16进制：A00300

汇编指令：MOV AL,[3]

含义：从3号单元读取数据送入寄存器AL

CPU对存储器的读写

:CPU要想进行数据的读写，必须和外部器件进行三类信息的交互：

; 存储单元的地址
（地址信息）

; 器件的选择，读或写命令
（控制信息）

; 读或写的数据
（数据信息）

:演示

机器码： 101000000000001100000000

16进制：A00300

汇编指令：MOV AL,[3]

含义：从3号单元读取数据送入寄存器AL

内存地址空间

:什么是内存地址空间

; CPU地址总线宽度为N，寻址空间为2NB

; 8086CPU的地址总线宽度为20，那么可
以寻址1MB个内存单元，其内存地址空
间为1MB。

:从CPU角度看地址空间分配

RAM

ROM

主板上的RAM

扩展槽上的RAM(例显卡)

系统BIOS

接口卡上的BIOS

将各类存储器看作一个逻辑存储器——统一编址

RAM

ROM

主板上的RAM

扩展槽上的RAM(例显卡)

系统BIOS

接口卡上的BIOS

:所有的物理存储器被看作一个由若干存储
单元组成的逻辑存储器；

:每个物理存储器在这个逻辑存储器中占有
一个地址段，即一段地址空间；

:CPU在这段地址空间中读写数据，实际上
就是在相对应的物理存储器中读写数据。

内存地址空间的分配方案——以8086PC机为例

00000

主存储器地址空间
640K RAM

9FFFF

A0000
显存地址空间

128K RAM
BFFFF

C0000
各类ROM地址空间

256KB
FFFFF

汇编语言程序设计
Assembly Language

I. 绪　论

贺利坚　主讲

0101 我们要学汇编语言

0102 由机器语言到汇编语言

0103 计算机的组成

0104 内存的读写与地址空间

0105 汇编语言实践环境搭建

汇编语言程序设计课程内容
1. 绪论
2. 访问寄存器和内存
3. 汇编语言程序
4. 内存寻址方式
5. 流程转移与子程序
6. 中断及其应用
7. 高级汇编语言技术

视频（共7个） 教材对应章节

0101 为什么要学汇编语言

0102 由机器语言到汇编语言 1.1-1.3节

0103 计算机的组成 1.4-1.10节

0104 内存的读写与地址空间 1.11-1.15节

0105 汇编语言实践环境搭建

汇编语言程序设计
Assembly Language

寄存器及数据存储

贺利坚　主讲

CPU的组成

00000

主存储器地址空间
640K RAM

9FFFF

A0000
显存地址空间

128K RAM
BFFFF

C0000
各类ROM地址空间

256KB
FFFFF

内存

:运算器进行信息处理；

:寄存器进行信息存储；

:控制器协调各种器件
进行工作；

:内部总线实现CPU内
各个器件之间的联系。

寄存器是CPU内部的信息存储单元

:8086CPU有14个寄存器：

; 通用寄存器：AX、BX、CX、DX

; 变址寄存器：SI、DI

; 指针寄存器：SP、BP

; 指令指针寄存器： IP

; 段寄存器：CS、SS、DS、ES

; 标志寄存器：PSW

:共性

; 8086CPU所有的寄存器都是16位的，

可以存放两个字节。

通用寄存器——以AX为例

: 一个16位寄存器存储一个16位的数据

; 最大值？

; 216-1

: 例：在AX中存储18D

; 18D

--- 12H

--- 10010B

:再例：在AX中存储20000D

; 20000D

--- 4E20H

--- 0100111000100000B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AX

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

“横看成岭侧成峰“
:问题

; 8086上一代CPU中的寄存器都是8位
的，如何保证程序的兼容性？

:方案

; 通用寄存器均可以分为两个独立的
8位寄存器使用

:细化

; AX可以分为AH和AL

; BX可以分为BH和BL

; CX可以分为CH和CL

; DX可以分为DH和DL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0

AX

AH AL

用十六进制可以直观的看出这个数据是由哪些8位数据构成。

0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

“字”在寄存器中的存储

: 8086是16位CPU

; 8086的字长(word size)为16bit

:一个字(word)可以存在一个16位寄存器中

; 这个字的高位字节存在这个寄存器的高8位寄存器

; 这个字的低位字节存在这个寄存器的低8位寄存器

高位字节 低位字节

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 0 1 0 0 0 0 00 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0

汇编语言程序设计
Assembly Language

mov和add指令

贺利坚　主讲

学习汇编指令——用中学

注：汇编指令不区分大小写

写出汇编指令执行的结果(1)

程序段中的指令 指令执行后AX中的数据 指令执行后BX中的数据

mov ax, 4E20H

add ax, 1406H

mov bx, 2000H

add ax, bx

mov bx, ax

add ax, bx

设原AX、BX中的值均为0000H

4E20H 0000H

6226H 0000H

6226H 2000H

8226H 2000H

8226H 8226H

044CH 8226H

写出汇编指令执行的结果(2)
程序段中的指令 指令执行后AX中的数据 指令执行后BX中的数据

mov ax, 001AH

mov bx, 0026H

add al, bl

add ah, bl

add bh, al

mov ah, 0

add al, 85H

add al, 93H

设原AX、BX中的值均为0000H

001AH 0000H

001AH 0026H

0040H 0026H

2640H 0026H

2640H 4026H

0040H 4026H

00C5H 4026H

0058H 4026H

讨论：若执行add ax, 93H，AX结果为0158H

汇编语言程序设计
Assembly Language

确定物理地址的方法

贺利坚　主讲

物理地址

:CPU访问内存单元时要给出内存单元的地址。

:所有的内存单元构成的存储空间是一个一维的线性空间。

:每一个内存单元在这个空间中都有唯一的地址，这个唯
一的地址称为物理地址。

:事实
; 8086有20位地址总线，可传送20位地址，寻址能力

为1M。
; 8086是16位结构的CPU

. 运算器一次最多可以处理16位的数据，寄存器
的最大宽度为16位。

. 在8086内部处理的、传输、暂存的地址也是16
位，寻址能力也只有64KB！

:问题：8086如何处理在寻址空间上的这个矛盾？！

00000

主存储器地址空间
640K RAM

9FFFF

A0000
显存地址空间

128K RAM
BFFFF

C0000
各类ROM地址空间

256KB
FFFFF

8086CPU对应的内存

8086CPU给出物理地址的方法

:8086CPU的解决方法
; 用两个16位地址(段地址、偏移地址)

合成一个20位的物理地址。

:地址加法器合成物理地址的方法
; 物理地址=段地址×16+偏移地址

 段地址：　1230
+ 偏移地址： 00C8

 物理地址：123C8

例：

演示：物理地址=段地址×16+偏移地址

例：8086CPU访问地址为123C8H的内存单元

:方法：物理地址=段地址×16+偏移地址
 段地址：　1230
+ 偏移地址： 00C8

 物理地址：123C8

思考：段地址是123CH，可否？

 段地址：　123C
+ 偏移地址： 0008

 物理地址：123C8

 段地址：　123B
+ 偏移地址： 0018

 物理地址：123C8

“段地址×16+偏移地址=物理地址”的本质含义

:要解决的问题

; 用两个16位的地址（段地址、偏移地址），

相加得到一个20位的物理地址

:本质含义

; CPU在访问内存时，用一个基础地址（段

地址×16）和一个相对于基础地址的偏移

地址相加，给出内存单元的物理地址。

汇编语言程序设计
Assembly Language

内存的分段表示法

贺利坚　主讲

用分段的方式管理内存

: 8086CPU用“（段地址×16）+偏移地址=物理地址”的方
式给出内存单元的物理地址。

:内存并没有分段，段的划分来自于CPU！！！

00000

主存储器地址空间
640K RAM

9FFFF

A0000
显存地址空间

128K RAM
BFFFF

C0000
各类ROM地址空间

256KB
FFFFF

我本为一体，分段

不分段，随意！

总量1M的内存空间

分段靠我，依

着我的方便来！

同一段内存，多种分段方案

10000H到100FFH
单元组成一个段

起始地址（ 基础地址）为10000H，
段地址为1000H，大小为100H

10000H到1007FH
单元组成一个段

10080H到100FFH
单元组成一个段

（1）段地址×16 必然是 16的倍数，所以一个段的起始地址也一定是16的倍数；
（2）偏移地址为16位，16 位地址的寻址能力为 64K，所以一个段的长度最大为64K。

起始地址（ 基础地址 ）为10000H和10080H，
段地址为1000H和1008H，大小均为80H

其他分法...

用不同的段地址和偏移地址形成同一个物理地址

物理地址 段地址 偏移地址

21F60H 2000H 1F60H

0F60H

0060H

0000H

2F60H
:偏移地址16位，变化范围为0~FFFFH，用偏移地

址最多寻址64KB。

:例：给定段地址2000H，用偏移地址寻址的范
围是：20000H~2FFFFFH，共64K

例：数据在21F60H内存单元中，段地址是2000H，说法

　（a）数据存在内存2000:1F60单元中；

　（b）数据存在内存的2000H段中的1F60H单元中。

在8086PC机中存储单元地址的表示方法

段地址很重要！——用专门的寄存器存放段地址。

4个段寄存器：
CS - 代码段寄存器　　　DS - 数据段寄存器
SS - 栈段寄存器　　　　ES - 附加段寄存器

2100H

21F0H

21F6H

1F00H

偏移地址可以用多种方法提供——8086丰富的取址方式。

汇编语言程序设计
Assembly Language

Debug的使用

贺利坚　主讲

Debug是什么？

: Debug是DOS系统中的著名的调试程序，也可以运行在windows系统实模式下。

: 使用Debug程序，可以查看CPU各种寄存器中的内容、内存的情况，并且在机器指令级跟踪程
序的运行！

: Debug就是传奇！

Debug能做什么？

: 用R命令查看、改变CPU寄存器的内容

: 用D命令查看内存中的内容

: 用E命令改变内存中的内容

: 用U命令将内存中的机器指令翻译成汇编指令

: 用A命令以汇编指令的格式在内存中写入机器指令

: 用T命令执行机器指令

:
厉害了，Debug!

启动Debug
: 在DOS提示符下输入命令：debug

用R命令查看、改变CPU寄存器的内容

: R - 查看寄存器内容

: R 寄存器名 - 改变指定寄存器内容

用D命令查看内存中的内容

: D - 列出预设地址内存处的
128个字节的内容

: D 段地址:偏移地址 - 列出内
存中指定地址处的内容

: D 段地址:偏移地址 结尾偏移
地址 - 列出内存中指定地址范
围内的内容

用E命令改变内存中的内容

: E 段地址:偏移地址 数据1 数据2 ...

: E 段地址:偏移地址

; 逐个询问式修改

; 空格 - 接受，继续

; 回车 - 结束

用U命令将内存中的机器指令翻译成汇编指令

:有汇编指令
mov ax, 0123H
mov bx, 0003H
mov ax, bx
add ax, bx

:对应的机器码为
B8 23 01
BB 03 00
89 D8
01 D8

: e 地址 数据 - 写入

: d 地址 - 查看

: u 地址 - 查看代码

用A命令以汇编指令的格式在内存中写入机器指令

:有汇编指令
mov ax, 0123H
mov bx, 0003H
mov ax, bx
add ax, bx

:对应的机器码为
B8 23 01
BB 03 00
89 D8
01 D8

: a 地址 - 写入汇编指令

: d 地址 - 查看数据

: u 地址 - 查看代码

用T命令执行机器指令

: t - 执行CS:IP处的指令
mov ax, 0123H
mov bx, 0003H
mov ax, bx
add ax, bx

用Q命令退出Debug
: q - 退出Debug

Debug是敲门砖，
尽快习练!

汇编语言程序设计
Assembly Language

CS、IP与代码段

贺利坚　主讲

两个关键的寄存器

: CS：代码段寄存器

: IP： 指令指针寄存器

: CS:IP：CPU将内存中CS:IP

指向的内容当作指令执行。

主存储器地址
空间

640K RAM

00000

9FFFF

显存地址空间
128K RAM

A0000

BFFFF

各类ROM地址
空间

256KB

C0000

FFFFF

例示：在CS和IP指示下代码的执行

:8086CPU当前状态：CS中内容为2000H，IP中内容为0000H

:内存20000H~20009H处存放着可执行的机器代码　

指令的执行过程...

8086PC读取和执行指令演示

:8086PC工作过程的简要描述：

（1）从CS:IP指向内存单元读取

指令，读取的指令进入指

令缓冲器；

（2）IP = IP + 所读取指令的长

度，从而指向下一条指令；

（3）执行指令。 转到步骤

（1），重复这个过程。

指令读取和执行的实证演示-Debug

: 用debug程序执行下面的代码

mov ax, 0123H

mov bx, 0003H

mov ax, bx

add ax, bx

: a 地址 - 写入汇编指令

: u 地址 - 查看代码

: t - 执行CS:IP处代码

问：内存中有数据 B8 23 01 BB 03 00 89 D8 01 D8，
究竟用作一般数据，还是用作指令？

答：CPU将CS:IP指向的内存单元中的内容看作指令！

汇编语言程序设计
Assembly Language

jmp指令

贺利坚　主讲

修改CS、IP的指令

: 事实：执行何处的指令，取决于CS:IP

: 应用：可以通过改变CS、IP中的内容，来控制CPU要执行的目标指令

: 问题：如何改变CS、IP的值？

: 方法1：Debug 中的 R 命令可以改变寄存器的值——rcs, rip

; Debug是调试手段，并非程序方式！

:方法2：用指令修改

:方法3：转移指令 jmp

mov cs, 2000H
mov ip, 0000H

8086CPU不提供对CS
和IP修改的指令！

转移指令 jmp
: 同时修改CS、IP的内容

jmp 段地址：偏移地址

jmp 2AE3:3

jmp 3:0B16

功能：用指令中给出的段地址修改CS，偏移地址修改IP。

: 仅修改IP的内容

jmp 某一合法寄存器

jmp ax （类似于 mov IP, ax）

jmp bx

功能：用寄存器中的值修改IP。

问题分析

从20000H开始，执行的序列是：

（1）mov ax,6622

（2）jmp 1000:3

（3）mov ax,0000

（4）mov bx,ax

（5）jmp bx

（6）mov ax,0123H

（7）转到第（3）步执行

CS 2000 IP 0000

AX BX CX

汇编语言程序设计
Assembly Language

内存中字的存储

贺利坚　主讲

内存中字的存储

:事实：对8086CPU，16位作为一个字

:问题

; 16位的字存储在一个16位的寄存器中，如何存储？

:回答

; 高8位放高字节，低8位放低字节

:问题

; 16位的字在内存中需要2个连续字节存储，怎么存放？

:回答

; 低位字节存在低地址单元，高位字节存在高地址单元

; 例：20000D（4E20H）存放0、1两个单元，18D
（0012H）存放在2、3两个单元

mov ax, 4E20H

AX

4EH 20H

AH AL

0 20H

1 4EH

2 12H

3 00H

4

5

0 4EH

1 20H

2 00H

3 12H

4

5

0号是低地址单元，1号是高地址单元。

5

4

3 00HH

2 12H

1 4EH

0 20H

字单元

:字单元：由两个地址连续的内存单元组成，存放一个字型数据（16位）

:原理：在一个字单元中，低地址单元存放低位字节，高地址单元存放高位字节

; 在起始地址为0的单元中，存放的是4E20H

; 在起始地址为2的单元中，存放的是0012H

:问题：

（1）0地址单元中存放的字节型数据是（　　　　）

（2）0地址字单元中存放的字型数据是（　　　　）

（3）2地址单元中存放的字节型数据是（　　　　）

（4）2地址字单元中存放的字型数据是（　　　　）

0 20H

1 4EH

2 12H

3 00H

4

5

20H

4E20H

12H

0012H

汇编语言程序设计
Assembly Language

用DS和[address]实现字的传
送

贺利坚　主讲

要解决的问题：CPU从内存单元中要读取数据

:要求
; CPU要读取一个内存单元的时候，必须先给出这个内存单元的地址；

:原理
; 在8086PC中，内存地址由段地址和偏移地址组成（段地址:偏移地址）

:解决方案：DS和[address]配合
; 用 DS寄存器存放要访问的数据的段地址
; 偏移地址用[...]形式直接给出

将10000H(1000:0)

中的数据读到al中

:例2
 mov bx,1000H
 mov ds,bx
 mov [0],al

将al中的数据写到

10000H(1000:0)中

:将段地址送入DS的两种方式

(1) mov ds, 1000H

(2) mov bx, 1000H

 mov ds, bx

:例1
 mov bx,1000H
 mov ds,bx
 mov al, [0] :8086CPU不支持将数据直接送入段寄存器

（硬件设计的问题）

:套路：数据一般的寄存器段寄存器

字的传送

:8086CPU可以一次性传送一个字(16位的数据)

:例

mov bx, 1000H

mov ds, bx

mov ax, [0] ;1000:0处的字型数据送入ax

mov [0], cx ;cx中的16位数据送到1000:0处

主存储器地址
空间

640K RAM

00000

9FFFF

显存地址空间
128K RAM

A0000

BFFFF

各类ROM地址
空间

256KB

C0000

FFFFF

10000H 23

10001H 11

10002H 22

10003H 66

案例1
:指令

mov ax, 1000H

mov ds, ax

mov ax, [0]

mov bx, [2]

mov cx, [1]

add bx, [1]

add cx, [2]

:内存

10000H 23

10001H 11

10002H 22

10003H 66

AX= BX= CX= DX= SP= BP= SI= DI=

DS= ES= SS= CS= IP= NV UP EI NG NZ NA PO NC

案例2
:指令

mov ax, 1000H

mov ds, ax

mov ax, 2C31

mov [0], ax

mov bx, [0]

sub bx, [2]

mov [2], bx

:内存

10000H 23

10001H 11

10002H 22

10003H 11

AX= BX= CX= DX= SP= BP= SI= DI=

DS= ES= SS= CS= IP= NV UP EI NG NZ NA PO NC

汇编语言程序设计
Assembly Language

DS与数据段

贺利坚　主讲

对内存单元中数据的访问

:对于8086PC机，可以根据需要将一组内存单元定义为一个段。

; 物理地址=段地址×16+偏移地址

; 将一组长度为N（N≤64K）、地址连续、起始地址为16的倍数的内存单元当作专门存储数
据的内存空间，从而定义了一个数据段。

:例：用123B0H~123B9H的空间来存放数据

; 段地址：123BH　起始偏移地址：0000H　长度：10字节

; 段地址：1230H　起始偏移地址：00B0H　长度：10字节

;

:处理方法：(DS):([address])

; 用DS存放数据段的段地址

; 用相关指令访问数据段中的具体单元，单元地址由[address]指出

　　将哪段内存当作数据
段，段地址如何定，在编
程时安排。

mov、add、sub...

将123B0H~123BAH的内存单元定义为数据段

:累加数据段中的前3个单元中的数据

mov ax, 123BH

mov ds, ax

mov al, 0

add al, [0]

add al, [1]

add al, [2]

:累加数据段中的前3个字型数据

mov ax, 123BH

mov ds, ax

mov ax, 0

add ax, [0]

add ax, [2]

add ax, [4]

123B0H ...

123B1H ...

123B2H ...

123B3H ...

123B4H ...

123B5H ...

123B0H ...

123B1H ...

123B2H ...

123B3H ...

123B4H ...

123B5H ...

练习

:预设数据

:预设代码

:寄存器值

:执行代码
提示：可以通过“R寄存器”命令修改，关键是CS和IP

给出00000H-0001F的数据，请

写出下面代码的执行结果：

代码 AX BX

mov ax,[0000]

mov bx,[0001]

mov ax,bx

mov ax,[0000]

mov bx,[0002]

add ax, bx

add ax,[0004]

mov ax,0

mov al,[0002]

mov bx, 0

mov bl, [000C]

add al,bl

①“人脑”计算；②“电脑”验证

用mov指令操作数据

指令形式 例示
mov 寄存器，数据 mov ax, 8

mov 寄存器，寄存器 mov ax, bx

mov 寄存器，内存单元 mov ax, [0]

mov 内存单元，寄存器 mov [0], ax

mov 段寄存器，寄存器 mov ds, ax

大胆地假设，小心地求证。

: 已知：mov 段寄存器，寄存器

 推测1 mov 寄存器，段寄存器

: 已知：mov 内存单元，寄存器

　推测2 mov 内存单元，段寄存器

 推测3 mov 段寄存器，内存单元

: 已知：mov 寄存器，数据

 推测4 mov 段寄存器，数据

:验证1：

:验证2：

　mov ax, 1000H

　mov ds, ax

　mov [0], ds

:验证3：

　mov ax, 1000H

　mov ds, ax

　mov ds, [0]

:验证4：

　mov ds, 8

加法add和减法sub指令

add指令形式 例示
add 寄存器，数据 add ax, 8

add 寄存器，寄存器 add ax, bx

add 寄存器，内存单元 add ax, [0]

add 内存单元，寄存器 add [0], ax

sub指令形式 例示
sub 寄存器，数据 sub ax, 8

sub 寄存器，寄存器 sub ax, bx

sub 寄存器，内存单元 sub ax, [0]

sub 内存单元，寄存器 sub [0], ax

: 推测1 add 段寄存器，寄存器

: 推测2 add 内存单元，内存单元

: 推测...

用DS和[address]形式访问内存中数据段方法小结

:结合体验品味

（1）字在内存中存储时 ，要用两个地址连续的内存单元来存放，字的
低位字节存放在低地址单元中，高位字节存放再高地址单元中。

（2）用 mov 指令要访问内存单元，可以在mov指令中只给出单元的偏
移地址，此时，段地址默认在DS寄存器中。

（3）[address]表示一个偏移地址为address的内存单元。

（4）在内存和寄存器之间传送字型数据时，高地址单元和高8位寄存器、
低地址单元和低8位寄存器相对应。

（5）mov、add、sub是具有两个操作对象的指令，访问内存中的数据段
（对照：jmp是具有一个操作对象的指令，对应内存中的代码段）。

（6）可以根据自己的推测，在Debug中实验指令的新格式。

:指令

mov ax, 1000H

mov ds, ax

mov ax, 11316

mov [0], ax

mov bx, [0]

sub bx, [2]

mov [2], bx

汇编语言程序设计
Assembly Language

栈及栈操作的实现

贺利坚　主讲

栈结构
:栈是一种只能在一端进行插入或删除操作的数据结构。

:栈有两个基本的操作：入栈和出栈。

; 入栈：将一个新的元素放到栈顶；

; 出栈：从栈顶取出一个元素。

:栈顶的元素总是最后入栈，需要出栈时，又最先被从栈
中取出。

:栈的操作规则：LIFO（Last In First Out，后进先出）

:CPU提供的栈机制

; 现今的CPU中都有栈的设计。

; 8086CPU提供相关的指令，支持用栈的方式访问内存空间。

; 基于8086CPU的编程，可以将一段内存当作栈来使用。

:PUSH(入栈)和 POP(出栈)指令
 push ax：将ax中的数据送入栈中
 pop ax：从栈顶取出数据送入ax
（以字为单位对栈进行操作）

例：设将10000H~1000FH内存当作栈来使用……
mov ax,0123H
push ax
mov bx,2266H
push bx
mov cx,1122H
push cx
pop ax
pop bx
pop cx

问题：
1、CPU如何知道一段内存空间被当作栈使用？
2、执行push和pop的时候，如何知道哪个单元是栈顶单元？

回答：8086CPU中，有两个与栈相关的寄存器：
　　　栈段寄存器SS 　　- 存放栈顶的段地址
　　　栈顶指针寄存器SP - 存放栈顶的偏移地址
——任意时刻，SS:SP指向栈顶元素。

栈的操作

mov ax, 1000H

mov ss, ax

mov sp, 0010H

mov ax, 001AH

mov bx, 001BH

push ax

push bx

pop ax

pop bx

AX BX SS SP

1000H 1000H 0010

寄存器
10000H

...

1000CH

1000DH

1000EH

1000FH

10010H

内存（栈空时）

SS:SP(栈顶)AX BX SS SP

001AH 001BH 1000H 0010

寄存器

AX BX SS SP

001AH 001BH 1000H 000C

寄存器 10000H

...

1000CH

1000DH

1000EH

1000FH

10010H

内存（入栈后和出栈后）

SS:SP(入栈后)

AX BX SS SP

001BH 001AH 1000H 0010

寄存器

SS:SP(出栈后)

1B

00

1A

00

push 指令和pop指令的执行过程

mov ax, 1000H

mov ss, ax

mov sp, 0010H

mov ax, 001AH

mov bx, 001BH

push ax

push bx

pop ax

pop bx

AX BX SS SP

1000H 1000H 0010

寄存器
10000H

...

1000CH

1000DH

1000EH

1000FH

10010H

内存（栈空时）

SS:SP(栈顶)AX BX SS SP

001AH 001BH 1000H 0010

寄存器

AX BX SS SP

001AH 001BH 1000H 000C

寄存器 10000H

...

1000CH 1B

1000DH 00

1000EH 1A

1000FH 00

10010H

内存（入栈后和出栈后）

SS:SP(入栈后)

AX BX SS SP

001BH 001AH 1000H 0010

寄存器

SS:SP(出栈后)

:push ax

（1）SP=SP–2；

（2）将ax中的内容送入SS:SP指向的内存单

元处，SS:SP此时指向新栈顶。

:pop ax

（1）将SS:SP指向的内存单元处的数据送

入ax中；

（2）SP = SP+2，SS:SP指向当前栈顶下面的

单元，以当前栈顶下面的单元为新的

栈顶。

:栈顶超界问题

; 如何能够保证在入栈、出栈时，栈顶不

会超出栈空间？

执行入栈(push)时，栈顶超出栈空间

当栈满的时候再
使用push指令入
栈， 将发生栈顶
超界问题。

栈顶超界是危险的。

执行出栈(pop)时，栈顶超出栈空间

当栈空的时候再
使用pop指令出栈，
将发生栈顶超界
问题。

栈顶超界是危险的。

栈顶超界问题的解决

超界如此危险，CPU
中可有法宝供弟子
使用？

江湖凶险，只能
靠你自己小心为
妙。

:8086CPU不保证对栈的操作不会超界。

 8086CPU 只知道栈顶在何处（由SS:SP指
示），不知道程序安排的栈空间有多大。

:我们在编程的时候要自己操心栈顶超界的
问题 ，要根据可能用到的最大栈空间，来
安排栈的大小，防止入栈的数据太多而导
致的超界；防止出栈时栈空了仍然继续出
栈而导致的超界。

栈的小结

:push、pop 实质上就是一种内存传送指令，可以在寄存器和内存
之间传送数据，与mov指令不同的是，push和pop指令访问的内
存单元的地址不是在指令中给出的，而是由SS:SP指出的。

:执行push和pop指令时，SP 中的内容自动改变。

:8086CPU提供的栈操作机制：
; 在SS，SP中存放栈顶的段地址和偏移地址，入栈和出栈指

令根据SS:SP指示的地址，按照栈的方式访问内存单元。
; push指令的执行步骤：

 1）SP=SP-2；
 2）向SS:SP指向的字单元中送入数据。

; pop指令的执行步骤：
1）从SS:SP指向的字单元中读取数据；
2）SP=SP-2。

10000H

...

1000CH

1000DH

1000EH

1000FH

10010H

内存（栈空时）

SS:SP(栈顶)

10000H

...

1000CH 1B

1000DH 00

1000EH 1A

1000FH 00

10010H

内存（入栈后和出栈后）

SS:SP(入栈后)

SS:SP(出栈后)

汇编语言程序设计
Assembly Language

关于“段”的总结

贺利坚　主讲

各种段——

:基础

; 物理地址=段地址×16+偏移地址

:做法

; 编程时，可以根据需要将一组内存单
元定义为一个段。

; 可以将起始地址为16的倍数，长度为
N（N ≤64K ）的一组地址连续的内存
单元，定义为一个段。

; 将一段内存定义为一个段，用一个段
地址指示段，用偏移地址访问段内的
单元——在程序中可以完全由程序员
安排。

:三种段
; 数据段

. 将段地址放在 DS中

. 用mov、add、sub等访问内存单元的指令
时，CPU将我们定义的数据段中的内容当
作数据段来访问；

; 代码段
. 将段地址放在 CS中，将段中第一条指令的

偏移地址放在IP中
. CPU将执行我们定义的代码段中的指令；

; 栈段
. 将段地址放在SS中，将栈顶单元的偏移地

置放在 SP 中
. CPU在需要进行栈操作(push、pop)时，就

将我们定义的栈段当作栈空间来用。

10000H 23

10001H 11

10002H 22

10003H 66

综合示例：按要求设置段并执行代码

mov bx, 1000H

mov ds, bx

mov bx, 1001H

mov ss, bx

mov sp, 10H

mov ax, [0]

mov bx, [2]

push ax

push bx

pop ax

pop bx

mov [0], ax

mov [2], bx　

10000H 23

10001H 11

10002H 22

10003H 66

...

1000FH

10010H

...

1001FH

10020H

...

20000H

...

数据段

栈段

代码段

综合示例：三个段地址可以一样滴！

mov bx, 1000H

mov ds, bx

mov ss, bx

mov sp, 20H

mov ax, [0]

mov bx, [2]

push ax

push bx

pop ax

pop bx

mov [0], ax

mov [2], bx　

10000H 23

10001H 11

10002H 22

10003H 66

...

1000FH

10010H

...

1001FH

10020H

...

...

...

数据段

栈段

代码段

汇编语言程序设计
Assembly Language

导学-汇编语言程序

贺利坚　主讲

0401 用汇编语言写的源程序
0402 由源程序到程序运行
0403 用Debug跟踪程序的执行

0601 在代码段中使用数据
0602 在代码段中使用栈
0603 将数据、代码、栈放入不同段

0501 [...]和(...)
0502 Loop指令
0503 Loop指令使用再例
0504 段前缀的使用

汇编语言程序设计课程内容

1. 绪论

2. 访问寄存器和内存

3. 汇编语言程序

4. 内存寻址方式

5. 流程转移与子程序

6. 中断及其应用

7. 高级汇编语言技术

各节与教材章节的对应关系

视频（共9个） 教材对应章节

0401 用汇编语言写的源程序 4.1-4.2节

0402 由源程序到程序运行 4.3-4.8节

0403 用Debug跟踪程序的执行 4.9节

0501 [...]和(...) 第5章序言部分+5.1节

0502 Loop指令 5.2节

0503 Loop指令使用再例 5.3节

0504 段前缀的使用 5.4-5.8节

0601 在代码段中使用数据 6.1节

0602 在代码段中使用栈 6.2节

0603 将数据、代码、栈放入不同段 6.3节

视频

教材

检测

实验

汇编语言程序设计
Assembly Language

用汇编语言写的源程序

贺利坚　主讲

用汇编语言编写程序的工作过程

程序员 编译器
计算机

1000100111011000
……
……

机器码
mov ax, bx
……
……

汇编程序

汇编指令，对应
有机器码的指令，
可以被编译为机
器指令，最终被
CPU执行。

伪

指

令

:伪指令

没有对应的机器码的指令，最终不被CPU所
执行。

:谁来执行伪指令呢？

伪指令是由编译器来执行的指令，编译器根
据伪指令来进行相关的编译工作。

:程序返回（套路！）：程序结束运行后，将
CPU的控制权交还给使它得以运行的程序
（常为DOS系统）。

assume cs:codesg
codesg segment
 mov ax,0123H
 mov bx,0456H
 add ax,bx
 add ax,ax

 mov ax,4c00h
 int 21h
codesg ends
end

汇编程序：包含汇编指令和伪指令的文本

程序中的三种伪指令

:段定义
; 一个汇编程序是由多个段组成的，这些段被用来存放代码、数据

或当作栈空间来使用。
; 一个有意义的汇编程序中至少要有一个段，这个段用来存放代码。
; 定义程序中的段：每个段都需要有段名

 段名 segment ——段的开始

 段名 ends ——段的结束

:end (不是ends)
; 汇编程序的结束标记。若程序结尾处不加end，编译器在编译程序

时，无法知道程序在何处结束。

:assume(假设)
; 含义是假设某一段寄存器和程序中的某一个用 segment … ends 定

义的段相关联——assume cs:codesg指CS寄存器与codesg关联，将
定义的codesg当作程序的代码段使用。

assume cs:codesg

codesg segment

 mov ax,0123H

 mov bx,0456H

 add ax,bx

 add ax,ax

 mov ax,4c00h

 int 21h

codesg ends

end

源程序经编译连接后变为机器码

assume cs:codesg

codesg segment
 mov ax,0123H
 mov bx,0456H
 add ax,bx
 add ax,ax

 mov ax,4c00h
 int 21h
codesg ends
end

源程序文件 .asm

　B8 23 01
　BB 56 04
　03 C3
　03 C0

　B8 00 4C
　CD 21

可执行文件 .exe

描述信息

编
译

连
接

汇编程序的结构

:在Debug中直接写入指令编写
的汇编程序

; 适用于功能简单、短小精悍的程序

; 只需要包含汇编指令即可

:单独编写成源文件后再编译为可执行文件的程序

; 适用于编写大程序

; 需要包括汇编指令，还要有指导编译器工作
的伪指令

; 源程序由一些段构成，这些段存放代码、数
据，或将某个段当作栈空间。

: ; ---注释

assume cs:code,ds:data,ss:stack
data segment
 dw 0123H,0456H,0789H,0abcH,0defH
data ends
stack segment
 dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
stack ends
code segment
 mov ax,stack
 mov ss,ax
 mov sp,20h ;设置栈段
 mov ax,data
 mov ds,ax ;设置数据段
 mov bx,0
 mov cx,8
 s: push [bx]
 add bx,2
 loop s

code ends
end

如何写出一个程序来？

:例：编程求 2^3。

①定义一个段

②实现处理任务

③指出程序在何结束

④段与段寄存器关联

⑤加上程序返回的代码

abc segment

abc ends ①

abc segment
 mov ax,2
 add ax,ax
 add ax,ax
abc ends ②

abc segment
 mov ax,2
 add ax,ax
 add ax,ax
abc ends
end ③

assume cs:abc
abc segment
 mov ax,2
 add ax,ax
 add ax,ax
abc ends
end ④

assume cs:abc
abc segment
 mov ax,2
 add ax,ax
 add ax,ax

 mov ax,4c00h
 int 21h
abc ends
end ⑤

程序中可能的错误

:语法错误
; 程序在编译时被编译器发现的错误；
; 容易发现下面程序中错误
 aume cs:abc
 abc segment
 mov ax,2
 add ax,ax
 add ax,sx
 end

: 逻辑错误
; 程序在编译时不能表现出来的、在运行时

发生的错误；
; 不容易发现下面程序中的错误

assume cs:abc
 abc segment
 mov ax,2
 add ax,ax
 add ax,bx
 mov ax,4c10H
 int 21H
 abc ends
 end

求 2^3

汇编语言程序设计
Assembly Language

由源程序到程序运行

贺利坚　主讲

由写出源程序到执行可执行文件的过程

连接

可执行文件 .exe

...
B82301 BB5604
01DB
...

相关的描述信息

运行程序

文本编辑
源程序文件 .asm

...
mov ax, 0123H
mov bx, 0456H
add ax, bx
...

...
mov ax, 0123H
mov bx, 0456H
add ax, bx
...

...
mov ax, 0123H
mov bx, 0456H
add ax, bx
...

...
mov ax, 0123H
mov bx, 0456H
add ax, bx
...

编译

目标文件 .obj
...
B82301 BB5604
01DB
...

...
B82301 BB5604
01DB
...

...
B82301 BB5604
01DB
... 计算机

编辑源程序

编译

• 　

:目标文件（*.OBJ）是我们
对一个源程序进行编译要
得到的最终结果。

:列表文件（*.LST）是编译
器将源程序编译为目标文
件的过程中产生的中间结
果。

:交叉引用文件（*.CRF）同
列表文件一样，是编译器
将源程序编译为目标文件
过程中产生的中间结果。

:对源程序的编译结束，编
译器输出的最后两行告诉
我们这个源程序没有警告
错误和必须要改正的错误。

提示语法错误

:两类错误

û Severe Errors

û 找不到所给出的
源程序文件。

命令后加 ; 以简化过程

连接
:可执行文件(.EXE)是我们对一个程序进行连接要得到的

最终结果。
:映像文件(.MAP)是连接程序将目标文件连接为可执行

文件过程中产生的中间结果。
:库文件(.LIB)里包含了一些可以调用的子程序，如果我

们的程序中调用了某一个库文件中的子程序，就需要
在连接的时候，将这个库文件和我们的目标文件连接
到一起，生成可执行文件。

:no stack segment，一个“没有栈段”的警告错误 ，可
以不理会这个错误。

:连接中可能会遭遇错误
:例：object nor found —— 找不到对象

命令后加 ;
以简化过程

执行可执行程序

:我们的程序没有像显示器输出任何信息。

程序只是做了一些将数据送入寄存器和

加法的操作，而这些事情，我们不可能

从显示屏上看出来。

:程序执行完成后，返回，屏幕上再次出

现操作系统的提示符。

小结
源文件

.asm

目标文件
.obj

目标文件
.obj

可执行文件
.exe

... B82301 BB5604 01DB ...

汇编语言程序设计
Assembly Language

运行及跟踪

贺利坚　主讲

回顾
源文件

.asm

目标文件
.obj

目标文件
.obj

可执行文件
.exe

... B82301 BB5604 01DB ...

看看这个环节的门道。

用Debug装载程序
075A:0000 075A0

075A:0001 075A1

075A:00FF 0769F

076A:0000 076A0

一共256(100H)字节的程序段
前缀(PSP)，作为数据区DS=075A

CS=076A

有效代码共
15(0FH)字节

DS=075A

CS=076A
程序被装入内存的什么地方？

:小结
; 程序加载后，DS中存放着程序所在内存区的段地址，这个内存区

的偏移地址为 0 ，则程序所在的内存区的地址为：DS:0。
; 这个内存区的前256 个字节存PSP，DOS用来和程序进行通信。
; 从 256字节处向后的空间存放的是程序，CS的值为DS+10H。
; 程序加载后，CX中存放代码的长度（字节）。

B8

23

01

BB

56

04

用Debug单步执行程序
075A:0000 075A0

075A:0001 075A1

075A:00FF 0769F

076A:0000 B8 076A0

23

01

BB

56

04

一共256(100H)字节的程序段
前缀(PSP)，作为数据区

其他方式执行
075A:0000 075A0

075A:0001 075A1

075A:00FF 0769F

076A:0000 B8 076A0

23

01

BB

56

04

一共256(100H)字节的程序段
前缀(PSP)，作为数据区

:继续命令P(Proceed)：
类似T命令，逐条执行
指令、显示结果。但遇
子程序、中断等时，直
接执行，然后显示结果。

:运行命令G(Go)：从指
定地址处开始运行程序，
直到遇到断点或者程序
正常结束。

程序执行的不同方式
:在DOS中执行

:在Debug中执行

:程序执行的“常态”
:DOS启动后，计算机由“命令解释器”（程序

command.com）控制
:运行可执行程序时，command将程序加载

入内存，设置CPU的CS:IP指向程序的第一条
指令（即程序的入口），使程序得以运行。

:程序运行结束后，返回到“命令解释器”，
CPU继续运行command。

:程序执行处于开发周期的运行方式；

:运行Debug时，command程序加载Debug.exe，
debug 将程序加载入内存，程序运行结束后
要返回到Debug中，使用Q命令退出Debug，
将返回到command中。

汇编语言程序设计
Assembly Language

[...]和(...)

贺利坚　主讲

[...]的规定与(...)的约定

:[...]——(汇编语法规定)表示一个内存单元

指令 段地址 偏移地址 操作单位

mov ax, [0]

mov al, [0]

mov ax,[bx]

mov al,[bx]

一个内
存单元
的描述

内存单元
的地址

内存单元
的长度
(类型)

段地址

偏移地址

在[0]中

在[0]中

在[bx]中

在[bx]中

字

字节

字

字节

在DS中

在DS中

在DS中

在DS中

:(...)——(为学习方便做出的约定)表示一个内存单元或寄存器中的内容
描述对象 描述方法 描述对象 描述方法

ax中的内容为0010H 2000:1000 处的内容为0010H

mov ax,[2]的功能 mov [2], ax的功能

add ax,2 的功能 add ax,bx的功能

push ax的功能 pop ax 的功能

(ax)=0010H (21000H)=0010H

(ax)=((ds)*16+2) ((ds)*16+2)=(ax)

(ax)=(ax)+2

 (sp) = (sp)-2
 ((ss)*16＋(sp))=(ax)

(ax)=((ss)*16+(sp))
(sp)=(sp)+2

(ax)=(ax)+(bx)

只能用寄存器
及物理地址

再约定：符号idata表示常量

:例：

;mov ax,[idata]

;mov bx,idata

;mov ds,idata

：代表mov ax,[1]、mov ax,[2]、mov ax,[3]...

：代表mov bx,1、mov bx,2、mov bx,3...

：代表mov ds,1、mov ds,2...(都是非法指令)

案例分析
mov ax,2000H
mov ds,ax
mov bx,1000H
mov ax,[bx]
inc bx
inc bx
mov [bx],ax
inc bx
inc bx
mov [bx],ax
inc bx
mov [bx],al
inc bx
mov [bx],al

BE 21000H

00 21001H

21002H

21003H

21004H

21005H

21006H

21007H

AX= BX=

DS= ES=

mov ax,[bx] --- (ax)=((ds) *16 +(bx))

mov [bx],ax --- ((ds)*16 +(bx))=(ax)

汇编语言程序设计
Assembly Language

Loop指令

贺利坚　主讲

Loop指令

:功能：实现循环（计数型循环）

:指令的格式

loop 标号
:CPU 执行loop指令时要进行的操作

① (cx)=(cx)-1；
② 判断cx中的值
　　不为零则转至标号处执行程序
　　如果为零则向下执行。

: 要求
; cx 中要提前存放循环次数，因为(cx)影响着

loop指令的执行结果
; 要定义一个标号

本程序功能：2 -> 4 -> 8 -> 16 -> 32 -> ...

用loop指令编程实例

任务1：编程计算2^2

assume cs:code
code segment
 mov ax,2
 ; 用2+2 实现2*2

 mov ax,4c00h
 int 21h
code ends
end

任务2：编程计算2^3

assume cs:code
code segment
 mov ax,2
 add ax,ax
 add ax,ax

 mov ax,4c00h
 int 21h
code ends
end

任务3：编程计算2^12

assume cs:code
code segment
 mov ax,2
 ; 做11次add ax,ax

 mov ax,4c00h
 int 21h
code ends
end

:用cx和loop 指令相配合实现循环功能的三个要点：
（1）在cx中存放循环次数；
（2）用标号指定循环开始的位置；
（3）在标号和loop 指令的中间，写上要循环执行的程序段（循环体）。

add ax,ax

用Debug执行程序

:

t命令和p命令的区别

:

:继续命令P(Proceed)：类似T命令，逐条执行指
令、显示结果。但遇子程序、中断等时，直接
执行，然后显示结果。

:运行命令G(Go)：从指定地址处开始运行程序，
直到遇到断点或者程序正常结束；G命令还可
以指定执行到的代码地址。

例：用Loop指令编程
:问题：计算123x236，结果存储在ax中
:方法：用加法实现乘法，将123连加236次

汇编语言程序设计
Assembly Language

Loop指令使用再例

贺利坚　主讲

再例：用Loop指令编程
:问题：计算ffff:0006字节单元中的数乘以3，结果存储在dx中
:程序

在汇编源程序中，数据不能以字
母开头，要在ffff前面加0

(ax)=((ds) *16 +(bx))

设置循环次数

结果在dx中

:其他必要的考虑：运算后的结果是否会超
出dx所能存储的范围？

:分析：ffff:0006 单元中的数是一个字节型
的数据，范围在0~255之间，则用它和3相
乘结果不会大于65535，不会出现超界。

先将内存中数据取出；

连加3次，即乘以3。

汇编语言程序设计
Assembly Language

段前缀的使用

贺利坚　主讲

引入段前缀：一个“异常”现象及对策

•

Debug中，mov al, [0]的功能是
——将DS:0存储单元的值传给AL

编译(masm)并连接(link)后...

编译好的程序中，
mov al, [0]变成了将常
量0传给AL

对策：在[idata]前显式地写上段寄存器
mov ax,2000h

mov ds,ax

mov bx,0

mov al,ds:[bx]

mov ax,2000h

mov ds,ax

mov al,ds:[0]

小结（在程序中）：

mov al,[0]：(al)=0，同mov al,0

mov al,ds:[0]：(al)=((ds)*16+0)

mov al,[bx]：(al)=((ds)*16+(bx))

mov al,ds:[bx]：与mov al,[bx]相同

这些出现在访问内存单元的指
令中，用于显式地指明内存单
元的段地址的“ds:”、“cs:”、
“ss:”或“es:”，在汇编语言
中称为段前缀。

访问连续的内存单元——loop和[bx]联手！
:问题：计算ffff:0~ffff:b字节单元中的数据的和，结果存储在dx中
:分析：
（1）运算后的结果是否会超出 dx 所能存储的范围？

ffff:0～ffff:b内存单元中的数据是字节型数据，范围在0～255之间，12个
这样的数据相加，结果不会大于 65535，可以在dx中存放下。

（2）是否可以将 ffff:0～ffff:b中的数据直接累加到dx中？
add dx, ds:[addr] ;(dx)=(dx)+?
期望：取出内存中的8位数据进行相加
实际：取出的是内存中的16位数据

（3）是否可以将 ffff:0～ffff:b中的数据直接累加到dl中？
 add dl, ds:[addr] ;(dl)=(dl)+?
期望：取出内存中的8位数据相加
实际：取出的是内存中的8位数据，但很有可能造成进位丢失。

: 对策：取出8位数据，加到16位的寄存器
mov al, ds:[addr]
mov ah, 0
add dx, ax

ffff:0

ffff:1

ffff:2

ffff:3

ffff:4

ffff:5

ffff:6

ffff:7

ffff:8

ffff:9

ffff:a

ffff:b

程序：计算ffff:0~ffff:b单元中的数据的和，结果存储在dx中
assume cs:code
code segment
 mov ax,0ffffh
 mov ds,ax

 mov dx,0

 mov al,ds:[0]
 mov ah,0
 add dx,ax

 mov al,ds:[1]
 mov ah,0
 add dx,ax

 mov al,ds:[2]
 mov ah,0
 add dx,ax

 mov al,ds:[3]
 mov ah,0
 add dx,ax

 mov al,ds:[4]
 mov ah,0
 add dx,ax

 mov al,ds:[5]
 mov ah,0
 add dx,ax

 mov al,ds:[6]
 mov ah,0
 add dx,ax

 mov al,ds:[7]
 mov ah,0
 add dx,ax

 mov al,ds:[8]
 mov ah,0
 add dx,ax

 mov al,ds:[9]
 mov ah,0
 add dx,ax

 mov al,ds:[0ah]
 mov ah,0
 add dx,ax

 mov al,ds:[0bh]
 mov ah,0
 add dx,ax

 mov ax,4c00h
 int 21h
code ends
end





bh0

0x
)xh100ffffh(sum

:改进

: 用loop循环

:方法

: 循环次数由CX控制

: 循环中要访问的
内存单元的偏移
地址放到 bx中，
随循环递增，访
问连续的内存单
元。

段前缀的使用

:问题：将内存ffff:0~ffff:b中的数据拷贝到 0:200~0:20b单元中。 ffff:0

ffff:1

ffff:2

ffff:3

ffff:4

ffff:5

ffff:6

ffff:7

ffff:8

ffff:9

ffff:a

ffff:b

0:200

0:201

0:202

0:203

0:204

0:205

0:206

0:207

0:208

0:209

0:20a

0:20b

汇编语言程序设计
Assembly Language

在代码段中使用数据

贺利坚　主讲

问题：这样做是危险的！

:例：将内存ffff:0~ffff:b中的数据拷贝到 0:200~0:20b单元中。

:问题

;程序中直接写地址，危险！

;“安全”位置存放数据，存哪里？

:对策

;在程序的段中存放数据，运行
时由操作系统分配空间。

;段的类别：数据段、代码段、
栈段

;各种段中均可以有数据

;可以在单个的段中安置，也可
以将数据、代码、栈放入不同
的段中。

ffff:0

ffff:1

ffff:2

ffff:3

ffff:4

ffff:5

ffff:6

ffff:7

ffff:8

ffff:9

ffff:a

ffff:b

0:200

0:201

0:202

0:203

0:204

0:205

0:206

0:207

0:208

0:209

0:20a

0:20b

应用案例

:问题：编程计算以下8个数据的和，结果存在ax 寄存器中

　 0123H，0456H，0789H，0abcH，0defH，0fedH，0cbaH，0987H

:解决方案1

只要求数据本身，并未指定在
哪些内存单元中！

在代码段中定义数据

dw: define word，
定义字型数据

dw 定义一个字
db 定义一个字节
dd 定义一个双字

23 CS:0
01 CS:1
56 CS:2
04 CS:3

...

87 CS:e
09 CS:f

CS:10
CS:11
...

数据

代码

这个程序有问题！ 真正的代码并不应
该从0000开始

从0000开始的是数
据！

完全乱套的代码！

其实这一段本来就
是数据+代码！

真正的代码，从
0010开始

:解决问题的关键：让数据从CS:0000开始，让代码从CS:0010开始！

这样改进

:问题：编程计算以下8个数据的和，结果存在ax 寄存器中

　 0123H，0456H，0789H，0abcH，0defH，0fedH，0cbaH，0987H

:解决方案2

end的作用： 除了通知编译器
程序结束外，还可以通知编译
器程序的入口在什么地方。

定义一个标号，
指示代码开始
的位置。

assume cs:code
code segment
 :
 数据
 :
begin:
 :
 :
 代码
 :
 :
code ends
end begin

程
序
的
一
般
框
架

:效果：程序加载后，CS:IP指向要执行的第一条指令在start处！

改过的程序木有问题鸟！ 真正的代码
从0010开始

从CS:0000处开始的
依然是数据！

是这些代码！

在代码段中使用数据

汇编语言程序设计
Assembly Language

在代码段中使用栈

贺利坚　主讲

在代码段中使用栈：以数据逆序存放为例
:问题：完成下面的程序，利用栈，将程序中定义的数据逆序存放。

assume cs:codesg

codesg segment

 dw 0123h,0456h,0789h,0abch,0defh,0fedh,0cbah,0987h

 ?

code ends

end

:程序的思路大致如下：
; 程序运行时，定义的数据存放在cs:0~cs:F单元中，共8个字单元。

; 依次将这8个字单元中的数据入栈，然后再依次出栈到这 8 个字
单元中，从而实现数据的逆序存放。

; 栈需要的内存空间，在程序中通过定义“空”数据来取得。

0987H
0cbaH
0fedH
0defH
0abcH
0789H
0456H
0123H

入栈后的数据

数据逆序存放程序
:问题：完成下面的程序，利用栈，将程序中定义的数据逆序存放。

assume cs:codesg

codesg segment

 dw 0123H,0456H,0789H,0abcH,0defH,0fedH,0cbaH,0987H

 dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

start: mov ax,cs

 mov ss,ax

 mov sp,30h

 ; 入栈

 ; 出栈

 mov ax,4c00h

 int 21h

codesg ends

end start

0123H CS:0
0456H CS:2
0789H CS:4
0abcH CS:6
0defH CS:8
0fedH CS:a
0cbaH CS:c
0987H CS:e

0 CS:10
0 ...
0 CS:20
0 CS:22
0 CS:24
0 CS:26
0 CS:28
0 CS:2a
0 CS:2c
0 CS:2e

CS:30

0123H CS:0
0456H CS:2
0789H CS:4
0abcH CS:6
0defH CS:8
0fedH CS:a
0cbaH CS:c
0987H CS:e

0 CS:10
0 ...
0 CS:20
0 CS:22
0 CS:24
0 CS:26
0 CS:28
0 CS:2a
0 CS:2c
0 CS:2e

CS:30

0987H
0cbaH
0fedH
0defH
0abcH
0789H
0456H
0123H

0987H
0cbaH
0fedH
0defH
0abcH
0789H
0456H
0123H

 mov bx,0
 mov cx,8
 s: push cs:[bx]
 add bx,2
 loop s

 mov bx,0
 mov cx,8
 s0: pop cs:[bx]
 add bx,2
 loop s0

在Debug中的执行结果

汇编语言程序设计
Assembly Language

将数据、代码、栈放入不同
段

贺利坚　主讲

评价这种方案

assume cs:codesg

codesg segment

 dw 0123H,0456H,0789H,0abcH,0defH,0fedH,0cbaH,0987H

 dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

start: mov ax,cs

 mov ss,ax

 mov sp,30h

 ; 入栈

 ; 出栈

 mov ax,4c00h

 int 21h

codesg ends

end start

0123H CS:0
0456H CS:2
0789H CS:4
0abcH CS:6
0defH CS:8
0fedH CS:a
0cbaH CS:c
0987H CS:e

0 CS:10
0 ...
0 CS:20
0 CS:22
0 CS:24
0 CS:26
0 CS:28
0 CS:2a
0 CS:2c
0 CS:2e

CS:30

 mov bx,0
 mov cx,8
 s: push cs:[bx]
 add bx,2
 loop s

 mov bx,0
 mov cx,8
 s0: pop cs:[bx]
 add bx,2
 loop s0

:特点：数据、栈和代
码都在一个段。

:问题

; 程序显得混乱，
编程和阅读时都
要注意何处是数
据，何处是栈，
何处是代码。

; 只应用于要处理
的数据很少，用
到的栈空间也小，
加上没有多长的
代码。

:对策：数据、栈和代
码放在不同段。

; 用栈将数据逆序存放

将数据、代码、栈放入不同段

:　assume cs:code,ds:data,ss:stack
data segment
 dw 0123H,0456H,0789H,0abcH,0defH,0fedH,0cbaH,0987H
data ends
stack segment
 dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
stack ends
code segment
start:

 ; 初始化各段寄存器

 ; 入栈

 ; 出栈
 mov ax,4c00h
 int 21h
code ends
end start

 mov ax,stack
 mov ss,ax
 mov sp,20h
 mov ax,data
 mov ds,ax

 ; 初始化各段寄存器
 mov bx,0
 mov cx,8
 s: push [bx]
 add bx,2
 loop s

 ; 入栈

 mov bx,0
 mov cx,8
s0: pop [bx]
 add bx,2
 loop s0

 ; 出栈

0123H DS:0
0456H DS:2
0789H DS:4
0abcH DS:6
0defH DS:8
0fedH DS:a
0cbaH DS:c
0987H DS:e

0 SS:0
0 ...
0 SS:10
0 SS:12
0 SS:14
0 SS:16
0 SS:18
0 SS:1a
0 SS:1c
0 SS:1e

CS:0

数据段

栈段

代码段

在Debug中执行

汇编语言程序设计
Assembly Language

寄存器

贺利坚　主讲

汇编语言程序设计课程内容

1. 绪论

2. 访问寄存器和内存

3. 汇编语言程序

4. 内存寻址方式

5. 流程转移与子程序

6. 中断及其应用

7. 高级汇编语言技术

0701 处理字符问题
0702 [bx+idata]方式寻址
0703 SI和DI寄存器
0704 [bx+si]和[bx+di]方式寻址
0705 [bx+si+idata]和[bx+di+idata]方式寻址
0706 不同的寻址方式的灵活应用
0707 不同寻址方式演示

0801 用于内存寻址的寄存器
0802 在哪里？有多长？
0803 寻址方式的综合应用
0804 用div指令实现除法
0805用dup设置内存空间

4. 内存寻址方式

各节与教材章节的对应关系

视频（共12个） 教材对应章节

0701 处理字符问题 7.1-7.4

0702 [bx+idata]方式寻址 7.5-7.6

0703 SI和DI寄存器 7.7

0704 [bx+si]和[bx+di]方式寻址 7.8

0705 [bx+si+idata]和[bx+di+idata]方式寻址 7.9

0706 不同的寻址方式的灵活应用 7.10

0707 不同寻址方式演示 补充

0801 用于内存寻址的寄存器 8.1

0802 在哪里？有多长？ 8.2-8.5

0803 寻址方式的综合应用 8.6

0804 用div指令实现除法 8.7

0805用dup设置内存空间 8.8-8.9

视频

教材

检测

实验

汇编语言程序设计
Assembly Language

处理字符问题

贺利坚　主讲

处理字符问题

:汇编程序中，用 '……' 的方式指明数据是以字符的形式给出的，编译器将
把它们转化为相对应的ASCII码。

DS:0，即075A0H是程序开始的地址，隔过100H程序段前缀……

大写 二进制 小写 二进制
 A 01000001 a 01100001
 B 01000010 b 01100010
 C 01000011 c 01100011
 D 01000100 d 01100100

小写字母的
ASCII码值比大
写字母的ASCII
码值大20H 。

大写+20H-->小写　　小写-20H-->大写

大小写转换的问题

:问题：对datasg中的字符串

; 第一个字符串：小写字母转换为大写字母

; 第二个字符串：大写字母转换为小写字母

assume cs:codesg,ds:datasg
datasg segment
 db 'BaSiC'
 db 'iNfOrMaTiOn'
datasg ends
codesg segment
 　　...
codesg ends
end start

b 62H 0110 0010B
B 42H 0100 0010B

I 49H 0100 1001B
i 69H 0110 1001B

对第一个字符串，
若字母是小写，转大写；
否则，不变

对第二个字符串，
若字母是大写，转小写；
否则，不变

BASIC

information

弟子要用
分支结构么？大可不必！

 0110 0010 (b)
and 1101 1111

 = 0100 0010 (B)

 0100 1001 (I)
 or 0010 0000

 = 0110 1001 (i)

逻辑或指令：or dest, src

逻辑与指令：and dest, src

程序：解决大小写转换的问题

assume cs:codesg,ds:datasg
datasg segment
 db 'BaSiC'
 db 'iNfOrMaTiOn'
datasg ends

codesg segment
start:
 mov ax,datasg
 mov ds,ax
 ; 第一个字符串：小写字母转换为大写字母
 ; 第二个字符串：大写字母转换为小写字母
 mov ax,4c00h
 int 21h
codesg ends
end start

 mov bx,5
 mov cx,11
 s0: mov al,[bx]
 or al,00100000b
 mov [bx],al
 inc bx
 loop s0

; 第二个字符串：大写字母转换为小写字母

 mov bx,0
 mov cx,5
 s: mov al,[bx]
 and al,11011111b
 mov [bx],al
 inc bx
 loop s

; 第一个字符串：小写字母转换为大写字母

在Debug中执行程序

汇编语言程序设计
Assembly Language

[bx+idata]方式寻址

贺利坚　主讲

[bx+idata]的含义

: [bx+idata]表示一个内存单元，它的偏移地址为(bx)+idata（bx中的数值加上idata）。

:mov ax,[bx+200] / mov ax, [200+bx] 的含义

; 将一个内存单元的内容送入ax

; 这个内存单元的长度为2字节（字单元），存放一个字

; 内存单元的段地址在ds中，偏移地址为200加上bx中的数值

; 数学化的描述为： (ax)=((ds)*16+200+(bx))

:指令mov ax,[bx+200]的其他写法（常用）

; mov ax,[200+bx]

; mov ax,200[bx]

; mov ax,[bx].200

(ds)*16

...

...

[200]

[200+bx]

(bx)有了[bx+idata]这种
表示内存单元的方
式，我们就可以用
更高级的结构来看
待所要处理的数据。

弟子想到了C语言
中的数组。

(ds)*16+200

ds*16+200+(bx)

示例

:　

应用：用[bx+idata]的方式进行数组的处理

:问题：在codesg中填写代码，将datasg中定义的

; 第一个字符串，转化为大写

; 第二个字符串转化为小写。

assume cs:codesg,ds:datasg
datasg segment
 db 'BaSiC'
 db 'MinIX'
datasg ends
codesg segment
 start:
……
codesg ends
end start

 mov ax,datasg
 mov ds,ax
 mov bx,0
 mov cx,5
 s: mov al,[bx]
 and al,11011111b
 mov [bx],al
 inc bx
 loop s
 mov bx,5
 mov cx,5
 s0: mov al,[bx]
 or al,00100000b
 mov [bx],al
 inc bx
 loop s0

mov ax,datasg
mov ds,ax
mov bx,0
mov cx,5

s: mov al,[bx]
and al,11011111b
mov [bx],al
mov al,[5+bx]
or al,00100000b
mov [5+bx],al
inc bx
loop s

是否可以对两个同
长度的字符串“同
步”操作？

在Debug中执行

char a[5]="BaSiC";
char b[5]=""MinIX";
main(){
 int i;
 i=0;
 do{
 a[i]=a[i]&0xDF;
 b[i]=b[i]|0x20;
 i++;
 }
 while(i<5);
}

味道有点像！
[bx+idata]的
方式为高级语
言实现数组提
供了便利机制。

汇编语言程序设计
Assembly Language

SI和DI寄存器

贺利坚　主讲

CPU内部的寄存器

:8086CPU有14个寄存器：

; 通用寄存器：AX、BX、CX、DX

; 变址寄存器：SI、DI

; 指针寄存器：SP、BP

; 指令指针寄存器： IP

; 段寄存器：CS、SS、DS、ES

; 标志寄存器：PSW

SI和DI常执行与地址有关的操作

:SI和DI是8086CPU中和BX功能相近的寄存器

; 区别：SI和DI不能够分成两个8 位寄存器来使用。

: 下面的三组指令实现了相同的功能：

（1）mov bx,0

 mov ax,[bx]

（2）mov si,0

 mov ax,[si]

（3）mov di,0

 mov ax,[di]

（1）mov bx,0

 mov ax,[bx+123]

（2）mov si,0

 mov ax,[si+123]

（3）mov di,0

 mov ax,[di+123]

总会有什么不
同吧？

:BX：通用寄存器，在计算存储器
地址时，常作为基址寄存器用

:SI：source index，源变址寄存器

:DI：destination index，目标变址
寄存器

应用SI和DI
:问题

; 用寄存器SI和DI实现将字符串‘welcome to
masm!’复制到它后面的数据区中。

:程序定义

 assume cs:codesg,ds:datasg

 datasg segment

 db 'welcome to masm!'

 db '................'

 datasg ends

codesg segment

codesg ends

end

:源数据起始地址：datasg:0

:目标数据起始地址：datasg:16

:用ds:si 指向要复制的原始字

符串

:用 ds:di 指向目的空间

:然后用一个循环来完成复制。

程序运行

程序还可以写作——

[bx+idata]形式

汇编语言程序设计
Assembly Language

[bx+si]和[bx+di]方式寻址

贺利坚　主讲

[bx+si]和[bx+di]方式指定地址

:[bx+si]表示一个内存单元

; 偏移地址为(bx)+(si)（即bx中的数值加上si中的数值）。

:指令mov ax,[bx+si]的含义

; 将一个内存单元的内容送入ax

; 这个内存单元的长度为2字节（字单元），存放一个字

; 偏移地址为bx中的数值加上si中的数值

; 段地址在ds中

:指令mov ax,[bx+si]的数学化的描述

; (ax)=((ds)*16+(bx)+(si))

: mov ax,[bx+si]的其他写法

; mov ax,[bx][si]

ds*16

...

ds*16+(bx)

...

ds*16+(bx)+(si)

[bx]

[bx+si]

(si)

应用案例

: 内存中数据　2000:1000 BE 00 06 00 00 00 ……

: 程序执行后，ax、bx、cx中的内容？

 mov ax,2000H
 mov ds,ax
 mov bx,1000H
 mov si,0
 mov ax,[bx+si]
 inc si
 mov cx,[bx+si]
 inc si
 mov di,si
 mov ax,[bx+di]

DS SI DI

AX BX CX

汇编语言程序设计
Assembly Language

[bx+si+idata]和
[bx+di+idata]

贺利坚　主讲

[bx+si+idata]和[bx+di+idata]方式指定地址

:[bx+si+idata]表示一个内存单元
;偏移地址为(bx)+(si)+idata，即bx中的数值加上si中的数值再加上idata

:指令mov ax,[bx+si+idata]的含义
;将一个内存单元的内容送入ax
;这个内存单元的长度为2字节（字单元），存放一个字
;偏移地址为bx中的数值加上si中的数值再加上idata，段地址在ds中

:数学化的描述
; (ax)=((ds)*16+(bx)+(si)+idata)

: 指令mov ax,[bx+si+idata]的其他写法

 mov ax,[bx+200+si]

 mov ax,[200+bx+si]

 mov ax,200[bx][si]

ds*16

...

ds*16+(bx)

...

ds*16+(bx)+(si)

ds*16+(bx)+(si)+idata

[bx]

[bx+si+idata]mov ax,[bx].200[si]

mov ax,[bx][si].200

mov ax,[bx][si]

(si)

idata
[bx+si]

应用案例

:内存中数据：2000:1000 BE 00 06 00 6A 22 ……

:程序执行后，ax、bx、cx中的内容？

 mov ax,2000H

 mov ds,ax

 mov bx,1000H

 mov si,0

 mov ax,[bx+2+si]

 inc si

 mov cx,[bx+2+si]

 inc si

 mov di,si

 mov ax,[bx+2+di]

DS SI DI

AX BX CX

汇编语言程序设计
Assembly Language

不同的寻址方式的灵活应用

贺利坚　主讲

对内存的寻址方式

形式 名称 特点 意义 示例

[idata] 直接寻址
用一个常量/立即数
来表示地址

用于直接定位一个内
存单元

mov ax, [200]

[bx]
寄存器间
接寻址

用一个变量来表示内
存地址

用于间接定位一个内
存单元

mov bx, 0
mov ax, [bx]

[bx+idata]
寄存器相
对寻址

用一个变量和常量表
示地址

可在一个起始地址的
基础上用变量间接定
位一个内存单元

mov bx, 4
mov ax, [bx+200]

[bx+si]
基址变址
寻址

用两个变量表示地址 mov ax, [bx+si]

[bx+si+idata]
相对基址
变址寻址

用两个变量和一个常
量表示地址

mov ax, [bx+si+200]

案例1：灵活应用不同的寻址方式
:问题：编程将datasg段中每个单词的头一个字母改为大写字母。

assume cs:codesg,ds:datasg
datasg segment
 db '1. file '
 db '2. edit '
 db '3. search '
 db '4. view '
 db '5. options '
 db '6. help '
datasg ends

codesg segment
 start:…
 mov 4c00h
 int 21h
codesg ends
end start datasg中的数据的存储结构

 R=第一行的地址

 mov cx,6

 s: 改变R行3列的字母为大写

 R=下一行的地址

 loop s

 mov ax,datasg
 mov ds,ax

 mov bx,0
 mov cx,6
 s: mov al,[bx+3]
 and al,11011111b
 mov [bx+3],al
 add bx,16
 loop s

[bx+idata]方式

案例2：灵活应用不同的寻址方式

:问题：编程将datasg段中每个单词改为大写字母。

assume cs:codesg,ds:datasg
datasg segment
 db 'ibm '
 db 'dec '
 db 'dos '
 db 'vax '
datasg ends

codesg segment
 start: ……
codesg ends
end start

: 4 个字符串，看成一个 4行16列的二维数组

:要修改二维数组的每一行的前3列

:构造4x3次的二重循环

 R=第一行的地址；
 mov cx,4
 s0: C=第一列的地址
 mov cx,3
 s: 改变R 行，C列字母为大写
 C=下一列的地址；
 loop s
 R=下一行的地址
 loop s0

 mov ax,datasg
 mov ds,ax
 mov bx,0
 mov cx,4
 s0: mov si,0
 mov cx,3
 s: mov al,[bx+si]
 and al,11011111b
 mov [bx+si],al
 inc si
 loop s
 add bx,16
 loop s0

[bx+si]

方式

循环次数由
cx定，可是，
cx只有一个
哇！

二重循环问题的处理-法1
:问题：编程将datasg段中每个单词改为大写字母。

assume cs:codesg,ds:datasg
datasg segment
 db 'ibm '
 db 'dec '
 db 'dos '
 db 'vax '
datasg ends

codesg segment
 start: ……
codesg ends
end start

 ; 有缺陷的程序
 mov ax,datasg
 mov ds,ax
 mov bx,0
 mov cx,4
 s0: mov si,0
 mov cx,3
 s: mov al,[bx+si]
 and al,11011111b
 mov [bx+si],al
 inc si
 loop s
 add bx,16
 loop s0

 mov ax,datasg
 mov ds,ax
 mov bx,0
 mov cx,4
 s0: mov dx,cx
 mov si,0
 mov cx,3
 s: mov al,[bx+si]
 and al,11011111b
 mov [bx+si],al
 inc si
 loop s
 add bx,16
 mov cx,dx
 loop s0

将外层循环的cx
值保存在dx中

用dx中存放的外层循
环的计数值恢复cx

(cx)=(cx)-1针对外层循环

cx设置为内存循
环的次数

dx已经被用了
呢？别的寄存器
也有用处了呢？
寄存器只有14个！

方法1：

用dx保

存数据

二重循环问题的处理-法2、法3

 mov ax,datasg
 mov ds,ax
 mov bx,0
 mov cx,4
 s0: mov ds:[40H],cx
 mov si,0
 mov cx,3
 s: mov al,[bx+si]
 and al,11011111b
 mov [bx+si],al
 inc si
 loop s
 add bx,16
 mov cx,ds:[40H]
 loop s0

将外层循环的cx值保
存在datasg:40H单元中

用datasg:40H单元中
的值恢复cx

cx设置为内存循
环的次数

方法2：用固定的内存空间保存数据

stacksg segment
 dw 0,0,0,0,0,0,0,0
stacksg ends

 mov ax,stacksg
 mov ss,ax
 mov sp,16
 mov ax,datasg
 mov ds,ax
 mov bx,0
 mov cx,4
 s0: push cx
 mov si,0
 mov cx,3
 s: mov al,[bx+si]
 and al,11011111b
 mov [bx+si],al
 inc si
 loop s
 add bx,16
 pop cx
 loop s0

将外层循环的
cx值压栈

从栈顶弹出原cx的值，
恢复cx

cx设置为内存循
环的次数

方法3：

用栈保

存数据

汇编语言程序设计
Assembly Language

用于内存寻址的寄存器

贺利坚　主讲

哪些寄存器用于寻址？

:8086CPU有14个寄存器：

; 通用寄存器：AX、BX、CX、DX

; 变址寄存器：SI、DI

; 指针寄存器：SP、BP

; 指令指针寄存器： IP

; 段寄存器：CS、SS、DS、ES

; 标志寄存器：PSW

用于内存寻址的寄存器用法

:正确的指令
mov ax,[bx]
mov ax,[bx+si]
mov ax,[bx+di]
mov ax,[bp]
mov ax,[bp+si]
mov ax,[bp+di]

只有bx、bp、

si、di可以用

在[...]对内存

单元寻址

:错误的指令

mov ax,[cx]

mov ax,[ax]

mov ax,[dx]

mov ax,[ds]

bx以外的通

用寄存器、

段寄存器不

可以用在[...]

中

:正确的指令
mov ax,[bx]
mov ax,[si]
mov ax,[di]
mov ax,[bp]
mov ax,[bx+si]
mov ax,[bx+di]

:错误的指令

mov ax,[bx+bp]

mov ax,[si+di]

 mov ax,[bp+si]
 mov ax,[bp+di]
 mov ax,[bx+si+idata]
 mov ax,[bx+di+idata]
 mov ax,[bp+si+idata]
 mov ax,[bp+di+idata]

bx

bp

si

di
+

bx、bp区别：

· bx默认指ds段；

· bp默认指ss段。

mov ax,[bp] 　(ax)=((ss)*16+(bp))
mov ax,ds:[bp] 　(ax)=((ds)*16+(bp))
mov ax,es:[bp] 　(ax)=((es)*16+(bp))
mov ax,[bx] 　(ax)=((ds)*16+(bx))
mov ax,ss:[bx] 　(ax)=((ss)*16+(bx))
mov ax,[bp+idata] (ax)=((ss)*16+(bp)+idata)
mov ax,[bp+si] 　(ax)=((ss)*16+(bp)+(si))
mov ax,[bp+si+idata] (ax)=((ss)*16+(bp)+(si)+idata)

汇编语言程序设计
Assembly Language

在哪里？有多长？

贺利坚　主讲

两个基本问题

哪儿的？有多
大房子？干什
么工作？... mov ax, 0

mov ax, [0]
mov ax, [di]
mov ax, [bx+8]
mov ax, [bx+si]
mov ax, [bx+si+8]
mov ax, [bp]
mov ax, [bp+8]
mov ax, [bp+si]
mov ax, [bp+si+8]
...

（1）处理的数据在什么地方？

（2）要处理的数据有多长？

汇编语言中数据位置的表达

对于直接包含在机器指
令中的数据,称为立即数
（idata)，数据包含在
指令中

mov ax,1

add bx,2000h

or bx,00010000b

mov al,'a'

指令要处理的数据在寄
存器中，在汇编指令中
给出相应的寄存器名。

2、寄存器 3、内存：段地址（SA）和偏移地址（EA）1、立即数（idata）

mov ax,bx

mov ds,ax

push bx

mov ds:[0],bx

push ds

mov ss,ax

mov sp,ax

mov ax,[0]
mov ax,[di]
mov ax,[bx+8]
mov ax,[bx+si]
mov ax,[bx+si+8]
段地址默认在ds中

指令要处理的数据在内存中，由SA:EA确定内存
单元。

mov ax,[bp]

mov ax,[bp+8]

mov ax,[bp+si]

mov ax,[bp+si+8]

段地址默认在ss中

mov ax,ds:[bp] ：(ax)=((ds)*16+(bp))
mov ax,es:[bx] ：(ax)=((es)*16+(bx))
mov ax,ss:[bx+si] ：(ax)=((ss)*16+(bx)+(si))
mov ax,cs:[bx+si+8] ：(ax)=((cs)*16+(bx)+(si)+8)
显性的给出存放段地址的寄存器

指令要处理的数据有多长？

mov ax,1

 mov bx,ds:[0]

 mov ds,ax

 mov ds:[0],ax

 inc ax

 add ax,1000

字节byte操作 用word ptr或byte ptr指明字word操作

 mov al,1

 mov al,bl

 mov al,ds:[0]

 mov ds:[0],al

 inc al

 add al,100

 mov word ptr ds:[0],1
 inc word ptr [bx]
 inc word ptr ds:[0]
 add word ptr [bx],2

 mov byte ptr ds:[0],1
 inc byte ptr [bx]
 inc byte ptr ds:[0]
 add byte ptr [bx],2

在没有寄存器参与的内存单元访问指令中，用
word ptr或byte ptr显性地指明所要访问的内存单
元的长度是很必要的，否则，CPU无法得知所要
访问的单元是字单元，还是字节单元。

汇编语言程序设计
Assembly Language

寻址方式的综合应用

贺利坚　主讲

应用问题

: 关于姚明2001年的一条记录：

; 姓名：Yao

; 生日：'19800912'

; 球衣号码：15

; 场均得分：32

; 效力球队：SHH(上海)

:2002年，姚明的信息有了变化：

１、球衣号码变换成了11号

２、场均得分为13

３、效力球队变为NBA的休斯顿火箭队（HOU）

:任务：编程修改内存中的过时数据。

'Yao'
'19800912'

15
32

'SHH'

seg:60 +00
+03
+0C
+0E
+10

2001年数据

'Yao'
'19800912'

11
13

'HOU'

2002年数据

解决方案

 mov ax,seg
 mov ds,ax
 mov bx,60h
 mov word ptr [bx+0ch],11
 mov word ptr [bx+0eh],13

 mov si,0
 mov byte ptr [bx+10h+si],’H’
 inc si
 mov byte ptr [bx+10h+si],’O’
 inc si
 mov byte ptr [bx+10h+si],’U’

汇编指令中寻址的其他写法

:[bx+idata]

; [bx].idata

:[bx+idata+si]

; [bx].idata[si]

[bx+10h+si]

[bx].10h[si]

'Yao'
'19800912'

15
32

'SHH'

seg:60 +00
+03
+0C
+0E
+10

2001年数据

'Yao'
'19800912'

11
13

'HOU'

2002年数据

C语言和汇编的处理方式对比

8086CPU提供的如[bx+si+idata]的寻址方式为结构化数
据的处理提供了方便，使得我们可以在编程的时候，
从结构化的角度去看待所要处理的数据。

用bx定位整个结构
体；用idata定位结
构体中的某一个数
据项；用 si 定位数
据项中的元素 。

yao.team[i]：yao
是一个变量名，
指明了结构体变
量的地址；team
是一个名称，指
明了数据项team
的地址；i用来定
位team中的字符。

'Yao'
'19800912'

15
32

'SHH'

seg:60 +00
+03
+0C
+0E
+10

2001年数据

'Yao'
'19800912'

11
13

'HOU'

2002年数据

汇编语言程序设计
Assembly Language

用div指令实现除法

贺利坚　主讲

div 指令

:div是除法指令，使用div作除法的时候

; 被除数：（默认）放在AX 或 DX和AX中

; 除数：8位或16位，在寄存器或内存单元中

; 结果：……

:div指令格式

; div 寄存器

; div 内存单元

被除数 AX DX和AX

除数 8位内存或寄存器 16位内存或寄存器

商 AL AX

余数 AH DX

示例指令 被除数 除数 商 余数

div bl

div byte ptr ds:[0]

div byte ptr [bx+si+8]

div bx

div word ptr es:[0]

div word ptr [bx+si+8]

(ax) ((ds)*16+0) (al) (ah)

(ax) ((ds)*16+(bx)+(si)+8) (al) (ah)

(dx)*10000H+(ax) ((ds)*16+0) (ax) (dx)

(dx)*10000H+(ax) ((ds)*16+(bx)+(si)+8) (ax) (dx)

切记提前在默认的寄存器中设置好被除数，且默认寄存器不作别的用处。

除法的位数示例

6879H÷A2H：商A5，余FH

12345678H÷2EF7H：

商633AH，余2D82H

(ax) (bl) (al) (ah)

(dx)*10000H+(ax) (bx) (ax) (dx)

div 指令示例
:编程：利用除法指令计算100001/100。
:分析
; 100001D=186A1H
; 需要进行16位的除法
; 用dx和ax两个寄存器联合存放186A1H
; 用bx存放除数100D=64H

:编程：利用除法指令计算1001/100。
:分析
; 进行8位除法即可
; 在ax寄存器存放被除数3E9H
; 用bx存放除数100D=64H

在内存单元中实施除法
:双字型数据的定义(例示)

data segment

 db 1 ; 定义字节型数据01H，在data:0处，占1个字节
 dw ; 定义字型数据0001H，在data:1处，占2个字节
 dd 1 ; 定义双字型数据00000001H，在data:3处，占2个字（4个字节）
data ends

例：用div 计算data段中第一个数据除以第二个数据后的结果，商存放在第3个数据的存储单元中。
data segment
 dd 100001
 dw 100
 dw 0
data ends

 mov ax,data
 mov ds,ax
 mov ax,ds:[0]
 mov dx,ds:[2]
 div word ptr ds:[4];
 mov ds:[6],ax

汇编语言程序设计
Assembly Language

用dup设置内存空间

贺利坚　主讲

dup功能和用法

:功能：dup和db、dw、dd 等数据定义伪指令配合使用，用来进行数据的重复。

:示例

:dup的使用格式

; db 重复的次数 dup （重复的字节型数据）

; dw 重复的次数 dup （重复的字型数据）

; dd 重复的次数 dup （重复的双字数据）

指令 功能 相当于

db 3 dup (0) 定义了3个字节，它们的值都是0 db 0,0,0

db 3 dup (0,1,2) 定义了9个字节，由0、1、2重复3次构成 db 0,1,2,0,1,2,0,1,2

db 3 dup (‘abc’,’ABC’) 定义了18个字节，构成'abcABCabcABCabcABC' db ‘abcABCabcABCabcABC’

dup用途

:例示：定义一个容量为 200 个字节的栈段

不采用dup的格式
 stack segment

 dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

 dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

 dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

 dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

 dw 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

 stack ends

采用dup的格式
stack segment

 db 200 dup (0)

stack ends

再例

汇编语言程序设计
Assembly Language

导学-流程转移与子程序

贺利坚　主讲

汇编语言程序设计课程内容

1. 绪论

2. 访问寄存器和内存

3. 汇编语言程序

4. 内存寻址方式

5. 流程转移与子程序

6. 中断及其应用

7. 高级汇编语言技术

0901 “转移”综述
0902 操作符offset
0903 jmp指令
0904 其他转移指令

1001 call指令和ret指令
1002 call 和 ret 的配合使用
1003 mul 指令
1004 汇编语言的模块化程序设计
1005 寄存器冲突的问题

1101 标志寄存器
1102 带进(借)位的加减法
1103 cmp和条件转移指令
1104 条件转移指令应用
1105 DF标志和串传送指令

5. 流程转移与子程序

各节与教材章节的对应关系

视频（共14个） 教材对应章节

0901 “转移”综述 第9章 引子

0902 操作符offset 9.1

0903 jmp指令 9.2-9.6，9.10
0904 其他转移指令 9.7-9.9

1001 call指令和ret指令 10.1-10.6

1002 call 和 ret 的配合使用 10.7

1003 mul 指令 10.8

1004 汇编语言的模块化程序设计 10.9-10.11

1005 寄存器冲突的问题 10.12

1101 标志寄存器 11.1-11.5，11.11-11.12
1102 带进(借)位的加减法 11.6-11.7

1103 cmp和条件转移指令 11.8-11.9

1104 条件转移指令应用 11.9

1105 DF标志和串传送指令 11.10

视频

教材

检测

实验

汇编语言程序设计
Assembly Language

“转移”综述

贺利坚　主讲

转移综述

:背景：一般情况下指令是顺序地逐条执行的，而在实际中，常需要改变程序的执行流程。

:转移指令，

; 可以控制CPU执行内存中某处代码的指令

; 可以修改IP，或同时修改CS和IP的指令

:转移指令的分类

; 按转移行为

段内转移：只修改IP，如jmp ax

段间转移：同时修改CS和IP，如jmp 1000:0

; 根据指令对IP修改的范围不同

段内短转移：IP修改范围为-128~127

段内近转移：IP修改范围为-32768~32767

; 按转移指令

 无条件转移指令 （如：jmp）

 条件转移指令（如：jcxz）

 循环指令（如：loop）

 过程

 中断

 mov ax,0
 jmp short s
 add ax,1
s: inc ax

汇编语言程序设计
Assembly Language

操作符offset

贺利坚　主讲

用操作符offset取得标号的偏移地址

格式：
 offset 标号
例：
assume cs:codeseg
codeseg segment

start: mov ax,offset start ; 相当于 mov ax,0
 s: mov ax,offset s ; 相当于mov ax,3
codeseg ends
end start

练习
:问题：有如下程序段，添写2条指令，使该程序在运行中将s处的一条指令复制到s0处。

 assume cs:codesg
 codesg segment
 s: mov ax,bx
 mov si,offset s
 mov di,offset s0

 s0: nop
 nop
 codesg ends
ends

; nop的机器码占一个字节，起“占位”作用

:分析

（1）s和s0处的指令所在的内存单元的地址是多少？

　　　cs:offset s 和cs:offset s0

（2）将s处的指令复制到s0处，就是________

　　　就是将cs:offset s 处的数据复制到cs:offset s0处

（3）地址如何表示？

　　　段地址已知在cs中，偏移地址已经送入si和di中

（4）要复制的数据有多长？

　　　mov ax,bx指令的长度为两个字节，即1个字。

mov ax,cs:[si]
mov cs:[di],ax

汇编语言程序设计
Assembly Language

jmp指令

贺利坚　主讲

jmp指令——无条件转移

:jmp指令的功能

; 无条件转移，可以只修改IP，也可以同时修改CS和IP

:jmp指令要给出两种信息：

; 转移的目的地址

; 转移的距离

- 段间转移（远转移）：　jmp 2000:1000

- 段内短转移： jmp short 标号 ; IP的修改范围为 -128~127，8位的位移

- 段内近转移： jmp near ptr 标号 ; IP的修改范围为 -32768~32767，16位的位移

jmp指令：依据位移进行转移

:引子：常见指令中的立即数均在机器指令中有体现
:问题：jmp short 指令中，转移到了哪里？
; jmp short 的机器指令中，包含的是跳转到指令的相对

位置，而不是转移的目标地址。
:左边程序jmp short s指令的读取和执行：

（1）(IP)=0003，CS:IP指向EB 05(jmp 的

机器码)

（2）读取指令码EB 05进入指令缓冲器；

（3）(IP)=(IP)+所读取指令的长度

=(IP)+2=0005，CS:IP指向add ax, 0001；

（4）CPU执行指令缓冲器中的指令

EB05；

（5）指令EB 05执行后，

(IP)=(IP)+05=000AH，CS:IP指向inc ax

两种段内转移

:短转移：“jmp short 标号”
; 功能：(IP)=(IP)+8位位移
; 原理
（1）8位位移=“标号”处的地址-jmp指令

后的第一个字节的地址；
（2）short指明此处的位移为8位位移；
（3）8位位移的范围为-128~127，用补码

表示；
 （4）8位位移由编译程序在编译时算出。

:近转移：指令“jmp near ptr 标号”
; 功能： (IP)=(IP)+16位位移
; 原理
（1）16位位移=“标号”处的地址-jmp指令

后的第一个字节的地址；
（2）near ptr指明此处的位移为16位位移，

进行的是段内近转移；
（3）16位位移的范围为 -32769~32767，

用补码表示；
（4）16位位移由编译程序在编译时算出。

我要这样！

转移位移超界!

远转移：jmp far ptr 标号

远转移jmp far ptr 标号 近转移jmp near ptr 标号

段间转移 段内转移

far ptr指明了跳转到的目的地址，即包含了标号的段
地址CS和偏移地址IP。

near ptr 指明了相对于当前IP的转移位移，而不是转
移的目的地址。

转移地址在寄存器中的jmp指令

:指令格式：jmp 16位寄存器

; 功能：IP =（16位寄存器）

; 举例：

jmp ax

jmp bx
跳到哪儿由变量定，

就这样自在！

转移地址在内存中的jmp指令

 jmp word ptr 内存单元地址 jmp dword ptr 内存单元地址

段内转移 段间转移

功能：从内存单元地址处开始存放着一个字，是转
移的目的偏移地址。

功能：从内存单元地址处开始存放着两个字，高地址处
的字是转移的目的段地址，低地址处是转移的目
的偏移地址。

mov ax,0123H
mov [bx],ax
jmp word ptr [bx]
执行后，(IP)=0123H

mov ax,0123H
mov ds:[0],ax
jmp word ptr ds:[0]
执行后，(IP)=0123H

mov ax,0123H
mov [bx],ax
mov word ptr [bx+2],0
jmp dword ptr [bx]
执行后，
(CS)=0
(IP)=0123H
CS:IP指向0000:0123

mov ax,0123H
mov ds:[0],ax
mov word ptr ds:[2],0
jmp dword ptr ds:[0]
执行后，
(CS)=0
(IP)=0123H
CS:IP指向0000:0123

00 (IP)

02 (CS)

jmp指令小结

jmp指令格式 示例

jmp 标号 - 段间转移（远转移）：jmp far ptr 标号

- 段内短转移： jmp short 标号 ; 8位的位移

- 段内近转移： jmp near ptr 标号 ; 16位的位移

jmp 寄存器 ‒ jmp bx ; 16位的位移

jmp 内存单元(表示跳转到的地址) ‒ 段内转移：jmp word ptr 内存单元地址 ;jmp word ptr [bx]

‒ 段间转移：jmp dword ptr 内存单元地址 ;jmp dword ptr [bx]

在源程序中，不允许使用“jmp 2000:0100”的转移指令实现段间转移

• 这是在 Debug 中使用的汇编指令，汇编编译器并不认识

• 如果在源程序中使用，编译时也会报错。

汇编语言程序设计
Assembly Language

其他转移指令

贺利坚　主讲

jcxz指令

:指令格式：jcxz 标号

:功能：如果(cx)=0，则转移到标号处执行
　　　当(cx)≠0时，什么也不做（程序向下执行）

; 当(cx)=0时，(IP)=(IP)+8位位移）

. 8位位移=“标号”处的地址-jcxz指令后的第一个字节的地址；

. 8位位移的范围为-128~127，用补码表示；

. 8位位移由编译程序在编译时算出。

:jcxz是有条件转移指令

; 所有的有条件转移指令都是短转移

; 对IP的修改范围都为-128~127

; 在对应的机器码中包含转移的位移，而不是目的地址

loop指令

:指令格式：loop 标号

:指令操作

（1）(cx)=(cx)-1;

（2）当(cx)≠0时，则转移到标号处执行
　　 当(cx)=0时，程序向下执行

; 如果(cx)≠0，(IP)=(IP)+8位位移

. 8位位移=“标号”处的地址-loop指令后的第一个字节的地址

. 8位位移的范围为-128~127，用补码表示

. 8位位移由编译程序在编译时算出

loop s 在执行时只涉及到 s的位

移（ - 4，前移 4个字节，补码

表示为FCH）

根据位移进行“相对”转移的意义

:对 IP的修改是根据转移目的地址和转移起始地址之间的位移来进行
 jmp short 标号
 jmp near ptr 标号
 jcxz 标号
 loop 标号

‒ 在它们对应的机器码中不包含转移的目的地址，而包含的是到
目的地址的位移。

• 如果 loop s 的机器码中包含的是 s 的地址，则就对程序段
在内存中的偏移地址有了严格的限制，易引发错误。

• 当机器码中包含的是转移的位移，无论 s 处的指令的实际
地址是多少，loop指令转移的相对位移是不变的。

‒ 这样的设计，方便了程序段在内存中的浮动装配。

汇编语言程序设计
Assembly Language

call指令和ret指令

贺利坚　主讲

模块化程序设计

:调用子程序：call指令

:返回：ret 指令

:示例

:实质：流程转移指令，它们都
修改IP，或同时修改CS和IP

主程序

子程序 子程序 子程序

子程序 子程序

 mov ax, 0
 call s
 mov ax, 4c00h
 int 21h

s: add ax, 1
 ret

#include <stdio.h>
int cube(int x);
int main()
{
 printf("%d\n",cube(2));
 return 0;
}
int cube(int x)
{
 int f;
 f=x*x;
 f=f*x;
 return f;
}

call 指令

:字面意思：调用子程序

:实质：流程转移

; call指令实现转移的方法和 jmp 指令的原理相似

:格式：call 标号

:CPU执行call指令，进行两步操作：

（1）将当前的 IP 或 CS和IP 压入栈中；

（2）转移到标号处执行指令。

:call 标号

; 16位位移=“标号”处的地址－call指令后的第一个字节的地址；

; 16位位移的范围为 -32768~32767，用补码表示；

; 16位位移由编译程序在编译时算出。

(1) (sp) = (sp) – 2

 ((ss)*16+(sp)) = (IP)

(2) (IP) = (IP) + 16位位移

相当于：
push IP
jmp near ptr 标号

 mov ax, 0
 call s
 mov ax, 4c00h
 int 21h

s: add ax, 1
 retcall 标号

指令“call far ptr 标号”实现的是段间转移

:CPU执行“call far ptr 标号”时的操作

(1) (sp) = (sp) – 2

 ((ss) ×16+(sp)) = (CS)

 (sp) = (sp) – 2

 ((ss) ×16+(sp)) = (IP)

(2) (CS) = 标号所在的段地址

 (IP) = 标号所在的偏移地址

:“call far ptr 标号” 相当于

 push CS

 push IP

 jmp far ptr 标号

6 “call 标号”类似”jmp near ptr 标
号”，对应的机器指令中为相对
于当前IP的转移位移，而不是转
移的目的地址，实现段内转移。

6 指令“call far ptr 标号”实现的
是段间转移！

 mov ax, 0
 call far ptr s
　……

 mov ax, 4c00h
 int 21h

s: add ax, 1
 ret

转移地址在寄存器中的call指令

:指令格式

; call 16位寄存器

: 功能

; (sp) = (sp) – 2

; ((ss)*16+(sp)) = (IP)

; (IP) = (16位寄存器)

: 相当于进行

; push IP

; jmp 16位寄存器

 mov ax, 0
 call ax
　……

 mov ax, 4c00h
 int 21h

转移地址在内存中的call指令

:call word ptr 内存单元地址

相当于：

push IP

jmp word ptr 内存单元地址

mov sp,10h

 mov ax,0123h

 mov ds:[0],ax

 call word ptr ds:[0]

执行后，(IP)=0123H，(sp)=0EH

:call dword ptr 内存单元地址

相当于

push CS

push IP

jmp dword ptr 内存单元地址

mov sp,10h
mov ax,0123h
mov ds:[0],ax
mov word ptr ds:[2],0
call dword ptr ds:[0]
执行后，(CS)=0，(IP)=0123H，(sp)=0CH

高地址放段地址

低地址放偏移地址

返回指令：ret 和 retf
ret指令 retf指令

功能 用栈中的数据，修改IP的内容，从而实现近
转移；

用栈中的数据，修改CS和IP的内容，从而实现远转
移；

相当于 pop IP pop IP
pop CS

举例

演示
:CALL指令和

RET指令执行
的过程

 mov ax, 0
 call s
 mov ax, 4c00h
 int 21h

s: add ax, 1
 ret

汇编语言程序设计
Assembly Language

call 和 ret 的配合使用

贺利坚　主讲

具有子程序的源程序的框架

 标号:
 指令
 ret

子程序的框架

 call 标号

调用程序的框架

call 和 ret 的配合使用

: 例：

计算2的N次方，
计算前，N的
值由CX提供。

call要用
的栈呢？

例：为call和ret指令设置栈

汇编语言程序设计
Assembly Language

乘法：mul 指令

贺利坚　主讲

回顾：除法div 指令

:div是除法指令，格式为

; div 寄存器

; div 内存单元

:使用div作除法的时候

; 被除数：（默认）放在AX 或 DX和AX中

; 除数：8位或16位，在寄存器或内存单元中

; 结果：……

被除数 AX DX和AX

除数 8位内存或寄存器 16位内存或寄存器

商 AL AX

余数 AH DX

用 mul 指令做乘法

:格式
 mul 寄存器
 mul 内存单元

8位乘法 16位乘法

被乘数(默认) AL AX

乘数 8位寄存器或内存字节单元 16位寄存器或内存字单元

结果 AX DX（高位）和AX（低位）

例 mul bl

-- (ax)=(al)*(bl)
mul word ptr [bx+si+8]

-- (ax)=(ax)*((ds)*16+(bx)+(si)+8)结果的低16位；

 (dx)=(ax)*((ds)*16+(bx)+(si)+8)结果的高16位；mul byte ptr ds:[0]

-- (ax)=(al)*((ds)*16+0)

应用实例

（1）计算100*10

分析：100和10小于255，可以做8位乘法

程序：

 mov al,100

 mov bl,10

 mul bl

结果： (ax)=1000（03E8H）

（2）计算100*10000

分析：100小于255，可10000大于255，所以

必须做16位乘法

程序：

 mov ax,100

 mov bx,10000

 mul bx

结果： (dx)=000FH，(ax)=4240H，

 即：F4240H=1000000

8位乘法 16位乘法

被乘数(默认) AL AX

乘数 8位寄存器或内存字节单元 16位寄存器或内存字单元

结果 AX DX（高位）和AX（低位）

汇编语言程序设计
Assembly Language

汇编语言的模块化程序设计

贺利坚　主讲

模块化程序设计
:调用子程序：call指令

:返回：ret 指令
main

sub1

sub2

别以为模块化只是
高级语言干的事。

:子程序：根据提供的参
数处理一定的事务，处
理后，将结果（返回值）
提供给调用者。

参数和结果传递的问题

:问题：根据提供的N，计算N的3次方。

:考虑

（1）我们将参数N存储在什么地方？

（2）计算得到的数值，存储在什么地方？

: 方案

; 用寄存器传递参数

; 用内存单元进行参数传递

; 用栈传递参数

#include <stdio.h>
int cube(int x);
int main()
{
 printf("%d\n",cube(2));
 return 0;
}
int cube(int x)
{
 int f;
 f=x*x;
 f=f*x;
 return f;
}

用寄存器来存储参数和结果是最常使用的方法

:问题：根据提供的N，计算N的3次方。

:考虑

（1）将参数N存储在什么地方？

（2）计算得到的数值，存储在什么地方？

: 用寄存器传递参数

; 参数放到 bx 中，即(bx)=N

; 子程序中用多个 mul 指令计算 N^3

; 将结果放到 dx 和 ax中：(dx:ax)=N^3

; 汇编子程序
cube: mov ax,bx
 mul bx
 mul bx
 ret

assume cs:code
data segment
 dw 1,2,3,4,5,6,7,8
 dd 0,0,0,0,0,0,0,0
data ends
code segment
start:mov ax,data
 mov ds,ax
 mov si,0
 mov di,16
 ; 循环处理

 mov ax,4c00h
 int 21h
 code ends
end start

cube: mov ax,bx
 mul bx
 mul bx
 ret

 mov cx,8
 s: mov bx,[si]
 call cube
 mov [di],ax
 mov [di].2,dx
 add si,2
 add di,4
 loop s

 ; 循环处理

编程任务：计算data段中第一组数据的 3 次方，
　　　　　结果保存在后面一组dword单元中。

如果需要传递的数据
有3个、4个或更多，
寄存器不够了，怎么
办？

code segment
start: mov ax,data
 mov ds,ax
 mov si,0
 mov cx,12
 call capital
 mov ax,4c00h
 int 21h
capital: and byte ptr [si],11011111b
 inc si
 loop capital
 ret
code ends

用内存单元批量传递数据
:方案

; 将批量数据放到内存中，然后将它
们所在内存空间的首地址放在寄存
器中，传递给需要的子程序。

; 对于具有批量数据的返回结果，也
可用同样的方法。

:编程：将data段中的字符串转化为大写。
 assume cs:code
 data segment
 db 'conversation'
 data ends
 code segment
 start: ……
 code ends
 end start

用栈传递参数

:原理：由调用者将需要传递给子程序的参数
压入栈中，子程序从栈中取得参数

:任务：计算(a – b) ^ 3 ，a、b 为 word 型数据。
; 进入子程序前，参数a、b入栈
; 调用子程序，将使栈顶存放IP
; 结果：(dx : ax) = (a – b) ^ 3

difcube : push bp
 mov bp , sp
 mov ax , [bp + 4] ; 将栈中a的值送入ax 中
 sub ax , [bp + 6] ; 减栈中b的值
 mov bp , ax
 mul bp
 mul bp
 pop bp
 ret 4

:例：设 a = 3 、b = 1 ，计算：(a – b) ^ 3

指令 ret n 的含义

pop ip
add sp , n

mov ax , 1
push ax
mov ax , 3
push ax
call difcube

b

a
返回点IP
BP旧值

程序的执行过程中栈的变化

(4)在栈中保存bp的旧值

(6)恢复在栈中保存bp的值

(7)返回后，放弃入栈的参数

(2)调用子程序前的栈

code segment
start: mov ax , 1
 push ax
 mov ax , 3
 push ax
 call difcube
 mov ax,4c00h
 int 21h
difcube : push bp
 mov bp , sp
 mov ax , [bp + 4]
 sub ax , [bp + 6]
 mov bp , ax
 mul bp
 mul bp
 pop bp
 ret 4
code ends

(1)栈的初始情况

(3)调用子程序，IP入栈

重要技术：子程序要用bp，
为避免丢失有用数据，先
入栈，返回前出栈。

(5) 从栈中获得参数并计算
 计算结果(返回值)在dx和ax中

小结：参数和结果传递的问题

:问题：根据提供的N，计算N的3次方。

:考虑

（1）我们将参数N存储在什么地方？

（2）计算得到的数值，存储在什么地方？

: 方案

; 用寄存器传递参数

; 用内存单元进行参数传递

; 用栈传递参数

汇编语言程序设计
Assembly Language

寄存器冲突问题

贺利坚　主讲

引子

 mov ax,data
 mov ds,ax
 mov si,0
 mov cx,12
 call capital
 mov ax,4c00h
 int 21h
capital: and byte ptr [si],11011111b
 inc si
 loop capital
 ret

:问题：编程将data段中的字符串转化为大写。
 assume cs:code
 data segment
 db 'conversation'
 data ends
 code segment
 start: ……
 code ends
 end start

那个12咋来的?

数呗！

太弱了吧！

记得C语言用\0

汇编也可以

db ‘conversation’,0

代码：编程将data段中的字符串转化为大写

assume cs:code
data segment
 db 'conversation',0
 data ends
code segment
start: mov ax,data
 mov ds,ax
 mov si,0
 call capital
 mov ax,4c00h
 int 21h
capital: mov cl, [si]
 mov ch, 0
 jcxz ok
 and byte ptr [si], 11011111b
 inc si
 jmp short capital
 ok: ret
code ends
end start

;设置字符串
的起始地址，
并调用子程序

子程序依次读取每个字符进行检
测，如果不是0，进行大写的转
化，如果是0，结束处理。
——不再需要字符串的长度作为
参数。

实用性更好的
子程序。

; 再例将以下字符串转为大写
assume cs:code
data segment
 db 'word',0
 db 'unix',0
 db 'wind',0
 db 'good',0
data ends

code segment
start: mov ax,data
 mov ds,ax
 mov bx,0
 mov cx,4
 s: mov si,bx
 call capital
 add bx,5
 loop s
 mov ax,4c00h
 int 21h
capital: mov cl,[si]
 mov ch,0
 jcxz ok
 and byte ptr [si],11011111b
 inc si
 jmp short capital
 ok: ret
code ends
end start

cx既用于循环，
又用于读取数
据——冲突！

寄存器冲突问题的解决

:两个可能方案

（1）在编写调用子程序的程序时 ，注意看看子
程序中有没有用到会产生冲突的寄存器

. 如果有，调用者使用别的寄存器；

（2）在编写子程序的时候，不要使用会产生冲
突的寄存器。

:我们希望

（1）编写调用了程序的程序的时候不必关心子
程序到底使用了哪些寄存器；

（2）编写子程序的时候不必关心调用者使用了
哪些寄存器；

（3）不会发生寄存器冲突。

调用子程序的程序会很麻烦，必须要小心
检查所调用的子程序中是否有将产生冲突
的寄存器。

子程序应该是独立的，编写子程序的时候
无法知道也不必知道将来的调用情况。

子程序标准框架：

要调用子程序，必须看到子程序源码！？

子程序开始：子程序中使用的寄存器入栈

 子程序内容

 子程序使用的寄存器出栈

 返回（ret、retf）

可行的解决方案：在子程序的开始，

将要用到的所有寄存器中的内容都保

存起来，在子程序返回前再恢复。

 capital: push cx
 push si
change: mov cl,[si]
 mov ch,0
 jcxz ok
 and byte ptr [si],11011111b
 inc si
 jmp short change
 ok: pop si
 pop cx
 ret

寄存器冲突问题的解决示例

子程序标准框架：

子程序开始：子程序中使用的寄存器入栈

 子程序内容

 子程序使用的寄存器出栈

 返回（ret、retf）

assume cs:code
data segment
 db 'word',0
 db 'unix',0
 db 'wind',0
 db 'good',0
data ends

code segment
 start: mov ax,data
 mov ds,ax
 mov bx,0
 mov cx,4
 s: mov si,bx
 call capital
 add bx,5
 loop s
 mov ax,4c00h
 int 21h
 ; 子程序
code ends
end start

汇编语言程序设计
Assembly Language

标志寄存器

贺利坚　主讲

标志寄存器

:8086CPU有14个寄存器：

; 通用寄存器：AX、BX、CX、DX

; 变址寄存器：SI、DI

; 指针寄存器：SP、BP

; 指令指针寄存器： IP

; 段寄存器：CS、SS、DS、ES

; 标志(flag)寄存器：PSW/FLAGS

别称：程序状态字

认识标志寄存器的特殊之处

:标志寄存器的结构
; flag寄存器是按位起作用的，也就是说，它的每一位都有专门的含义，记录特定的信息。
; 8086CPU中没有使用flag的1、3、5、12、13、14、15位，这些位不具有任何含义。

:标志寄存器的作用
; 用来存储相关指令的某些执行结果
; 用来为CPU执行相关指令提供行为依据
; 用来控制CPU的相关工作方式

:观察寄存器的值

:直接访问标志寄存器的方法
; pushf ：将标志寄存器的值压栈；
; popf ：从栈中弹出数据，送入标志寄存器中。

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OF DF IF TF SF ZF AF PF CF

标志 值为1 值为0 意义

OF OV NV 溢出
DF DN UP 方向
SF NG PL 符号
ZF ZR NZ 零值
PF PE PO 奇偶
CF CY NC 进位

Parity
Zero
Sign

Carry

Overflow
Direction

Positive
/negative

odd/even

ZF-零标志(Zero Flag)
: ZF标记相关指令的计算结果是否为0
; ZF=1，表示“结果是0 ”，1表示“逻辑真”
; ZF=0，表示“结果不是0”，0表示“逻辑假”

:示例

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OF DF IF TF SF ZF AF PF CF

指令 执行结果

mov ax,1

and ax,0

ZF=1，

表示“结果是0”

mov ax,1

or ax,0

ZF=0，

表示“结果非0”

:在8086CPU的指令集中，有的指令的执行是影响标志
寄存器的，比如：add、sub、mul、div、inc、or、
and等，它们大都是运算指令，进行逻辑或算术运算；

:有的指令的执行对标志寄存器没有影响，比如：mov、
push、pop等，它们大都是传送指令。

:使用一条指令的时候，要注意这条指令的全部功能，
其中包括执行结果对标记寄存器的哪些标志位造成
影响。

PF-奇偶标志(Parity Flag)
: PF记录指令执行后，结果的所有二进制位中1的个数：

; 1的个数为偶数，PF = 1；

; 1的个数为奇数，PF = 0。

:示例

指令 执行结果
mov al,1
add al,10

结果为0000 1011B = 0000 0001B + 0000 1010B
其中有3（奇数）个1，则PF=0；

mov al,1
or al,2

结果为00000011B = 0000 0001B or 0000 0010B

其中有2（偶数）个1，则PF=1；

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OF DF IF TF SF ZF AF PF CF

SF-符号标志(Sign Flag)
: SF记录指令执行后，将结果视为有符号数

; 结果为负，SF = 1；

; 结果为非负，SF = 0。

:示例

指令 执行结果
mov al,10000001B
add al,1

结果al 为10000010B，
为负数，则SF=1；

sub ax, ax 结果ax为0，为非负数，
故SF=0；

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OF DF IF TF SF ZF AF PF CF

基础：有符号数与补码

:计算机中有符号数一律用补码来表示和存储。

:正整数的补码是其二进制表示，与原码相同

; 例：+9的补码是00001001

:负整数的补码，将其对应正数二进制的所有位取
反（包括符号位，0变1，1变0）后加1

;例：-5的补码

. -5对应正数5（00000101）→所有位取反
（11111010）→加1(11111011)

. 所以-5的补码是11111011。
1000 0010B作为有符号数对应-111 1110B，即-126D

1000 0010B作为无符号数对应+1000 0010B，即+130D

1000 0010B究竟算正数还是负数？

SF 标志是CPU对有符号数运算结果的一种记录 。
将数据当作有符号数来运算的时候，通过SF可知结果的正
负；将数据当作无符号数来运算，SF的值则没有意义，虽
然相关的指令影响了它的值。

见机行事

CF-进位标志(Carry Flag)
:在进行无符号数运算的时候，CF记录了运

算结果的最高有效位向更高位的进位值，
或从更高位的借位值。

:CF记录指令执行后，

; 有进位或借位，CF = 1

; 无进位或借位，CF = 0

:示例

指令 执行结果
mov al,98H
add al,al

 (al)=30H，CF=1，CF记录了最
高有效位向更高位的进位值

add al,al (al)=60H，CF=0，CF记录了最
高有效位向更高位的进位值

sub al,98H (al)=C8H，CF=1，CF记录了向
更高位的借位值

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OF DF IF TF SF ZF AF PF CF

:对于位数为N的无符号数来说，其对应的二进制信
息的最高位即第N-1位，是最高有效位

:假想存在的第N位，就是相对最高有效位的更高位。

8 7 6 5 4 3 2 1 0 8位数据

最高有效位假想的更高位
对16位运算也适用

OF-溢出标志(Overflow Flag)
:在进行有符号数运算的时候，如结果超过

了机器所能表示的范围称为溢出。

:OF记录有符号数操作指令执行后，

; 有溢出，OF = 1

; 无溢出，OF = 0

:示例

指令 执行结果
mov al,98
add al,99

(al)=197，超出了8位有符号数
的范围(-128~127)，OF=1

mov al,0F0H
add al,88H

 (al)=(-16)+(-120)=-136，有溢
出，OF=1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OF DF IF TF SF ZF AF PF CF

:机器所能表达的范围
; 以8位运算为例，结果用 8 位寄存器或内存单

元来存放，机器所能表示的范围就是-128~127。
; 同理，对于16 位有符号数，机器所能表示的

范围是-32768~32767。
:注意，此处溢出只是对有符号数运算而言。

:CF和OF的区别
; CF是对无符号数运算有意义的进/借位标志位
; OF是对有符号数运算有意义的溢出标志位

:应用

指令 执行结果
mov al,0F0H
add al,88H

 CF=1, OF=1，当无符号数运算有
进位，当有符号数运算有溢出

综合：一条指令会带来多个标志寄存器的变化　

指令 CF OF SF ZF PF

sub al, al

mov al, 10h

add al, 90h

mov al, 80h

add al, 80h

mov al, 0FCh

add al, 05h

mov al, 7Dh

add al, 0Bh

标志 值为1 值为0 意义

OF OV NV 溢出
DF DN UP 方向
SF NG PL 符号
ZF ZR NZ 零值
PF PE PO 奇偶
CF CY NC 进位

综合：一条指令会带来多个标志寄存器的变化　

指令 CF OF SF ZF PF

sub al, al 0 0 0 1 1

mov al, 10h

add al,90h

mov al, 80h

add al, 80h

mov al, 0FCh

add al, 05h

mov al 7Dh

add al, 0Bh

汇编语言程序设计
Assembly Language

 带进(借)位的加减法

贺利坚　主讲

adc-带进位加法指令

:adc是带进位加法指令 ，它利用了CF位上记录的进位值。
; 格式：adc 操作对象1,操作对象2
; 功能：操作对象1=操作对象1+操作对象2+CF
; 例：adc ax,bx 实现的功能是：(ax)=(ax)+(bx)+CF

:实例

指令

结果

解释

mov al,98H
add al,al
adc al,3

(ax)=34H

adc执行时，相当于计算：
(ax)+3+CF=30H+3+1=34H

mov ax,1
add ax,ax
adc ax,3

(ax)=5

adc执行时，相当于计算：
(ax)+3+CF=2+3+0=5

mov ax,2
mov bx,1
sub bx,ax
adc ax,1

(ax)=4

adc执行时，相当于计算：
(ax)+1+CF=2+1+1=4

adc指令应用：大数相加

:问题：8086指令提供add指令，完成8位或16位加法，有更大的数相加时，如何做？

; 32位、64位、24位？

:例：编程计算1EF000H+201000H，结果放
在ax（高16位）和bx（低16位）中

:解决思路：先将低16位相加，然后将高
16 位和进位值相加

:程序：

mov ax,001EH

mov bx,0F000H

add bx,1000H

adc ax,0020H

:例：计算 1E F000 1000H+20 1000 1EF0H，结果放在
ax（高16位），bx（次高16位），cx（低16位）中。

:解决思路：……

:程序：

mov ax,001EH

mov bx,0F000H

mov cx,1000H

add cx,1EF0H

adc bx,1000H

adc ax,0020H

 001E F000H　
+) 0020 1000H　
——————————————　
 　　　 ???　

 001E F000 1000H　
+) 0020 1000 1EF0H　

————————————————————　
 　　　 ???　

128位数据的相加

:问题：编写一个子程序，对两个128位数据进行相加。
; 名称：add128
; 功能：两个逆序存放的128位数据进行相加

数据为128位，需要8个字单元，由低地址单元到高地址

单元，依次存放由低到高的各个字。

:分析
; ds:si指向存储第一个数的内存空间
; ds:di指向存储第二个数的内存空间
; 运算结果存储在第一个数的存储空间中。

data segment
 dw 0A452H,0A8F5H,78E6H,0A8EH,8B7AH,54F6H,0F04H,671EH
 dw 0E71EH,0EF04H,54F6H,8B7AH,0A8EH,78E6H,58F5H,0452H
data ends

code segment
start : mov ax,data
 mov ds,ax
 mov si,0
 mov di,16
 mov cx,8
 call add128
 mov ax,4c00h
 int 21h
add128:
 ; 定义子程序
code ends
end start

 ;寄存器压栈
 sub ax,ax
s: mov ax,[si]
 adc ax,[di]
 mov [si],ax
 inc si
 inc si
 inc di
 inc di
 loop s
 ; 寄存器出栈
 ret

 ; 定义子程序

push ax
push cx
push si
push di

;寄存器压栈

 pop di
 pop si
 pop cx
 pop ax

; 寄存器出栈

 671E 0F04 54F6 8B7A 0A8E 78E6 A8F5 A452H
+)0452 58F5 78E6 0A8E 8B7A 54F6 EF04 E71EH
——

 　　　　　　　　　　　　　　 ? ? ?

sub ax, ax可否替换为mov ax, 0

两个inc di是否可以替换为add di, 2

讨
论

sbb指令
:应用：对任意大的数据进行减法运算

:例如：计算003E1000H–00202000H
　　　结果放在ax，bx中

:程序

 mov bx,1000H

 mov ax,003EH

 sub bx,2000H

 sbb ax,0020H

:sbb：带借位减法指令

; 格式：sbb 操作对象1,操作对象2

; 功能：
操作对象1=操作对象1–操作对象2–CF

; 与sub区别：利用CF位上记录的借位值

; 比如：sbb ax,bx

; 实现功能： (ax) = (ax) – (bx) – CF

 003E 1000H　
–) 0020 2000H　　

　——————————————　
　　　　　　???　

adc指令执行过程

汇编语言程序设计
Assembly Language

cmp与条件转移指令

贺利坚　主讲

cmp指令

:cmp指令

; 格式：cmp 操作对象1,操作对象2

; 功能：计算操作对象1–操作对象2

:应用

; 其他相关指令通过识别这些被影响的标志寄存器位来得知比较结果。

:例如

指令

功能

标志寄存器

ücmp 是比较指令，功能相当于减法指令，只是

不保存结果。

ücmp 指令执行后，将对标志寄存器产生影响。

cmp ax,ax

做(ax)–(ax)的运算，结果为0，但并不
在ax中保存，仅影响flag的相关各位。

ZF=1 PF=1 SF=0 CF=0 OF=0

mov ax,8
mov bx,3
cmp ax,bx

(ax)=8, (bx)=3

ZF=0 PF=1 SF=0 CF=0 OF=0

应用方法：用标志寄存器

值，确定比较结果。

无符号数比较与标志位取值

:思路：通过cmp 指令执行后相关标志位的值，可以看出比较的结果

:指令：cmp ax,bx

比较关系 (ax) ？ (bx) (ax) - (bx)特点 标志寄存器

等于 (ax) = (bx)

不等于 (ax)  (bx)

小于 (ax) < (bx)

大于等于 (ax) ≥ (bx)

大于 (ax) > (bx)

小于等于 (ax) ≤ (bx)

比较指令的设计思路，即：通过做减法运算影响标志寄存器，标志寄存器的相关位
的取值，体现比较的结果。

(ax) - (bx) = 0

(ax) - (bx)  0

(ax) - (bx) 将产生借位

(ax) - (bx) 不必借位

(ax) - (bx) 既不借位，结果又不为0

(ax) - (bx) 或者借位，或者结果为0

ZF = 1

ZF = 0

CF = 1

CF = 0

CF = 0且ZF = 0

CF = 1 或 ZF = 1

有符号数比较与标志位取值

:问题：用cmp来进行有符号数比较时，CPU用哪些标志位对比较结果进行记录？

:示例指令：cmp ah,bh

比较关系 (ax) ？ (bx) (ax) - (bx)特点 标志寄存器

等于 (ah) = (bh)

不等于 (ah)  (bh)

小于 (ax) < (bx)

大于 (ax) > (bx)

大于等于 (ax) ≥ (bx)

小于等于 (ax) < (bx)

仅凭结果正负（SF）无法得出结论，需要配合是否溢出（OF）得到结论。推导略。

(ah) - (bh) = 0 ZF = 1

(ah) - (bh)  0 ZF = 0

(ax) - (bx) 为负，且不溢出 SF = 1且OF=0

(ax) - (bx) 为负，且溢出 SF = 1且OF = 1

(ax) - (bx) 为非负，且无溢出 SF = 0且OF = 0

(ax) - (bx) 为非负，且有溢出 SF = 0 或 OF = 1

条件转移指令

指令 含义 测试条件

je/jz 相等/结果为0 ZF=1

jne/jnz 不等/结果不为0 ZF=0

js 结果为负 SF=1

jns 结果非负 SF=0

jo 结果溢出 OF=1

jno 结果溢出 OF=0

jp 奇偶位为1 PF=1

jnp 奇偶位不为1 PF=0

jb/jnae/jc 低于/不高于等于/有借位 CF=1

jnb/jae/jnc 不低于/高于等于/无借位 CF=0

cmp oper1, oper2 ;或者其他影响标志寄存器的指令
jxxx 标号

套
路

根据单个标志位转移的指令
指令 含义 测试条件

jb/jnae/jc 低于则转移 CF=1

jnb/jae/jnc 低于则转移 CF=0

jna/jbe 不高于则转移 CF=1或ZF=1

ja/jnbe 高于则转移 CF=0且ZF=0

根据无符号数比较结果进行转移的指令

指令 含义 测试条件

jl/jnge 小于则转移 SF = 1且OF=0

jnl/jge 不小于转移 SF = 0且OF = 0

jle/jng 小于等于则转移 SF = 0 或 OF = 1

jnle/jg 不小于等于则转移 SF = 1且OF = 1

根据有符号数比较结果进行转移的指令

j-Jump　e-Equal　n-Not　b-Below　a-Above　L-less　g-Greater
s-Sign　C-carry　p-Parity o-Overflow 　z-Zero

条件转移指令的使用
:jxxx系列指令和cmp指令配合，构造条件转移指令

; 不必再考虑cmp指令对相关标志位的影响和jxxx指令对相关标志位的检测

; 可以直接考虑cmp和jxxx指令配合使用时表现出来的逻辑含义。

:jxxx系列指令和cmp指令配合实现高级语言中if语句的功能

:例1：如果(ah)=(bh)，则(ah)=(ah)+(ah)，否则(ah)=(ah)+(bh)

 cmp ah,bh
 je s
 add ah,bh
 jmp short ok
 s: add ah,ah
 ok: ret

 ...
 ; ax获得值
 add ax,0
 jnz s
 inc ax
 s: ...

if(a==b){
 a=a+a;
}
else{
 a=a+b;
}

:例2：如果(ax)=0，则(ax)=(ax)+1

if(a==0)
{
 a++;
}

汇编语言程序设计
Assembly Language

条件转移指令应用

贺利坚　主讲

条件转移指令

:条件转移指令：jxxx——je/jna/jae...

; 可以根据某种“条件”，决定是否“转移”程
序执行流程。

; “转移”= 修改IP

:如何检测条件？

; 通过检测标志位，由标志位体现条件

; 条件转移指令通常都和cmp相配合使用，
cmp指令改变标志位

:例：双分支结构的实现

 cmp ah,bh
 je s
 add ah,bh
 jmp short ok
 s: add ah,ah
 ok: ret

if(a==b){
 a=a+a;
}
else{
 a=a+b;
}

jxxx前必须有
cmp吗?

未必！jxxx判
断时只关心标
志位。

应用示例

:给出下面一组数据：

 data segment

 db 8,11,8,1,8,5,63,38

 data ends

:请编程实现如下统计，用ax保存统计结果

（1）统计数值为8的字节的个数

（2）统计数值大于8的字节的个数

（3）统计数值小于8的字节的个数

（1）编程思路：初始设置(ax)=0，然后用循环依
次比较每个字节的值，找到一个和8相等的数就将
ax的值加1。

解法1 解法2

应用示例

:给出下面一组数据：

 data segment

 db 8,11,8,1,8,5,63,38

 data ends

:请编程实现如下统计，用ax保存统计结果

（1）统计数值为8的字节的个数

（2）统计数值大于8的字节的个数

（3）统计数值小于8的字节的个数

（2）初始设置(ax)=0，然后用循环依次比较每个
字节的值，找到一个大于8的数就将ax的值加1。

应用示例

:给出下面一组数据：

 data segment

 db 8,11,8,1,8,5,63,38

 data ends

:请编程实现如下统计，用ax保存统计结果

（1）统计数值为8的字节的个数

（2）统计数值大于8的字节的个数

（3）统计数值小于8的字节的个数

（3）初始设置(ax)=0，然后用循环依次比较每个
字节的值，找到一个小于8的数就将ax的值加1。

汇编语言程序设计
Assembly Language

DF标志和串传送指令

贺利坚　主讲

问题的提出

:编程：将data段中的第一个字符串复制到它后面的空间中。

 data segment

 db 'Welcome to masm!'

 db 16 dup (0)

 data ends

code segment
start: mov ax,data
 mov ds,ax
 mov si,0
 mov di,16
 mov cx,8
 s: mov ax,[si]
 mov [di],ax
 add si,2
 add di,2
 loop s

 mov ax,4c00h
 int 21h
code ends
end start

还能再简洁吗？

DF标志和串传送指令

DF-方向标志位（Direction Flag）
:功能
; 在串处理指令中，控制每次操作后si，di的增减。
; DF = 0：每次操作后si，di递增；
; DF = 1：每次操作后si，di递减。

:对DF位进行设置的指令：
; cld指令：将标志寄存器的DF位设为0(clear)
; std指令：将标志寄存器的DF位设为1(setup)

串传送指令1： movsb

功能：（以字节为单位传送）
(1) ((es)×16 + (di)) = ((ds) ×16 + (si))
(2) 如果DF = 0则： (si) = (si) + 1
 (di) = (di) + 1
 如果DF = 1则：(si) = (si) - 1
 (di) = (di) - 1

串传送指令2：movsw

功能：（以字为单位传送）
(1) ((es)×16 + (di)) = ((ds) ×16 + (si))
(2) 如果DF = 0则： (si) = (si) + 2
 (di) = (di) + 2
 如果DF = 1则：(si) = (si) - 2
 (di) = (di) - 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OF DF IF TF SF ZF AF PF CF

data segment
 db 'Welcome to masm!'
 db 16 dup (0)
data ends

code segment
start:
 ;设置寄存器
 ;循环传送
 mov ax,4c00h
 int 21h
code ends

mov ax,data
mov ds,ax
mov si,0
mov es,ax
mov di,16
cld

;设置寄存器

 mov cx ,16
s: movsb
 loop s

;循环传送

rep指令

:rep指令常和串传送指令搭配使用

:功能：根据cx的值，重复执行后面的指令

:用法：
rep movsb s : movsb

 loop s

rep movsw s : movsw
 loop s

应用实例

任务：用串传送指令，将F000H段中的最后
16个字符复制到data段中。

 data segment

 db 16 dup (0)

 data ends

F000H段的最后一个字符
的位置：F000:FFFF

	0100导学
	0101为什么要学汇编语言
	0102由机器语言到汇编语言
	0103计算机的组成
	0104内存的读写与地址空间
	1导学
	2寄存器及数据存储
	3mov和add指令
	4确定物理地址的方法
	5内存的分段表示法
	6Debug的使用
	7CS、IP与代码段
	8jmp指令
	9内存中字的存储
	10用DS和[adress]实现字的传送
	11DS与数据段
	12栈及栈操作的实现
	13关于“段”的总结
	1导学
	2用汇编语言写的源程序
	3由源程序到程序运行
	4用Debug跟踪程序的执行
	5[...]和(...)
	6Loop指令
	7Loop指令使用再例
	8段前缀的使用
	9在代码段中使用数据
	10在代码段中使用栈
	11将数据、代码、栈放入不同段
	1寄存器
	2处理字符问题
	3[bx+idata]方式寻址
	4SI和DI寄存器
	5[bx+si]和[bx+du+idata]方式寻址
	6不同的寻址方式的灵活应用
	8不同寻址方式演示
	9用于内存寻址的寄存器
	10在哪里？有多长？
	11寻址方式的综合应用
	12用div指令实现除法
	13用dup设置内存空间
	1导学-流程转移与子程序
	2转移综述
	3操作符offset
	4jmp指令
	5其他转移指令
	6call指令和ret指令
	7call和ret的配合适用
	8乘法：mul指令
	9汇编语言的模块化程序设计
	10寄存器冲突问题
	11标志寄存器
	12带进(借)位的加减法
	13cmp与条件转移指令
	14条件转移指令应用
	15DF标志和串传送指令

